

Séries e-HM

POMPES ÉLECTRIQUES CENTRIFUGES MULTICELLULAIRES HORIZONTALES FILETÉES ÉQUIPÉES DE MOTEURS IE2, IE3 (RÉG. (UE) 2019/1781)

(ErP 2009/125/CE)

Directive 2009/125/CE de l'Union européenne

La **Directive 2005/32/CE** sur les produits liés à l'énergie (**EuP**) et la **Directive 2009/125/CE** successive sur les produits liés à l'énergie (**ErP**) ont établi les exigences en matière d'écoconception pour les produits afin de réduire leur consommation d'énergie et par conséquent leur impact sur l'environnement.

Ces exigences s'appliquent aux produits placés et utilisés dans l'Espace économique européen (l'Union européenne ainsi que l'Islande, le Liechtenstein et la Norvège) en tant qu'unité autonome ou partie intégrée d'autres produits.

Les tableaux suivants indiquent les réglementations définissant les exigences applicables aux produits Lowara.

• Certains types de **pompes**, utilisées pour pomper de l'eau propre :

Réglementations	À partir de	Objectif
(EU) n° 547/2012 et mises à jour successives	1 janvier 2015	MEI ≥ 0,4

• **Circulateurs** d'une puissance hydraulique nominale de sortie comprise entre 1 et 2 500 W, destinés à être utilisés dans les systèmes de chauffage ou dans les circuits secondaires des systèmes de distribution de froid.

Réglementations	À partir de	Objectif
(CE) n° 641/2009 et mises à jour successives	1er août 2015	EEI < 0,23

• **Moteurs triphasés** avec une fréquence de 50 ou 60 ou 50/60 Hz et des tensions comprises entre 50 et 1 000 V (S1 et D.O.L.) :

Réglementations	À partir de	Objectif
(EU) n° 2019/1781 et mises à jour successives	1 juillet 2023	 IE2: moteurs avec une puissance nominale ≥ 0,12 et < 0,749 kW IE3: moteurs avec une puissance nominale ≥ 0,75 et < 74,9 kW IE4: moteurs avec une puissance nominale ≥ 75 et < 200 kW IE3: moteurs avec une puissance nominale ≥ 201 et < 1000 kW

• **Moteurs monophasés** avec une fréquence de 50 ou 60 ou 50/60 Hz et des tensions comprises entre 50 et 1 000 V (S1 et D.O.L.) :

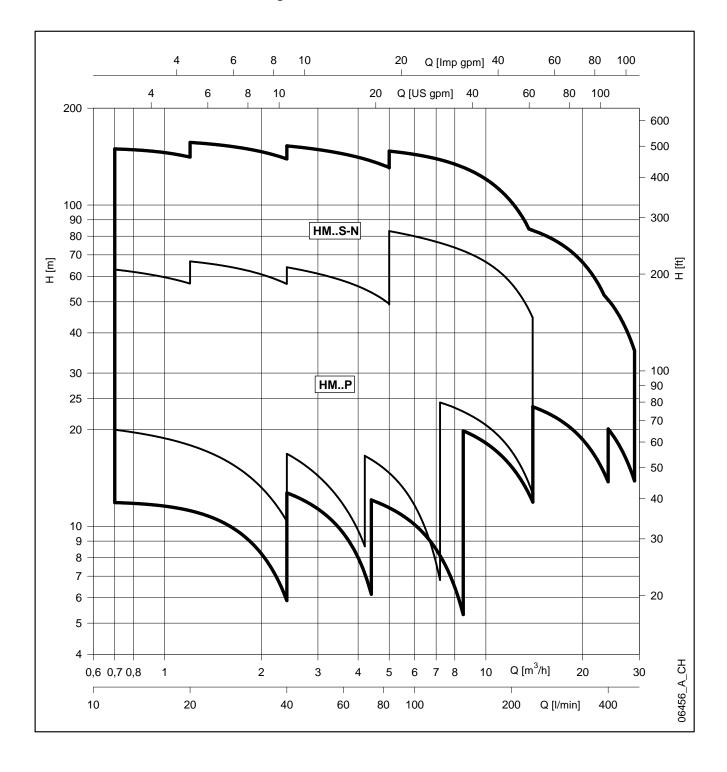
Réglementations	À partir de	Objectif
(EU) 2019/1781 et 2021/341	1 juillet 2023	IE2 : moteurs avec une puissance nominale ≥ 0,12 kW

• Variateurs de vitesse avec entrée triphasée et puissance nominale de sortie allant de 0,12 kW à 1 000 kW, prévus pour fonctionner avec un moteur inclus dans les mêmes réglementations.

Réglementations	À partir de	Objectif
(EU) 2019/1781 et 2021/341	1 juillet 2021	IE2

Lowara, HYDROVAR et Xylec sont des marques déposées de Xylem Inc. ou une de ses filiales.

Toutes les autres marques commerciales ou les marques déposées sont la propriété de leurs propriétaires respectifs.


TABLE DES MATIÈRES

SPÉCIFICATIONS	5
APPLICATIONS ET AVANTAGES - Services du bâtiment	6
APPLICATIONS ET AVANTAGES - Industrie	
CARACTÉRISTIQUES GÉNÉRALES	8
POMPES (ErP 2009/125/EC)	8
CODE D'IDENTIFICATION	
PLAQUE SIGNALÉTIQUE DE LA POMPE ÉLECTRIQUE	.10
VUE EN COUPE ÉLECTROPOMPE ET PRINCIPAUX COMPOSANTS	_11
GARNITURES MECANIQUES	15
MOTEURS (ErP 2009/125/EC)	.17
SÉRIES HMP	
PLAGE DES PERFORMANCES HYDRAULIQUES À 50 Hz, 2 PÔLES	20
DIMENSIONS ET POIDS, CARACTÉRISTIQUES DE FONCTIONNEMENT À 50 Hz, 2 PÔLES	22
SÉRIES HMS - HMN	
PLAGE DES PERFORMANCES HYDRAULIQUES À 50 Hz, 2 PÔLES	30
DIMENSIONS ET POIDS, CARACTÉRISTIQUES DE FONCTIONNEMENT À 50 Hz, 2 PÔLES	34
e-HM AVEC VARIATEUR DE VITESSE	
e-HME : VERSION AVEC VARIATEUR ET MOTEUR À AIMANTS PERMANENTS (VARIATEUR DE VITESSE e-SM)	53
e-HMX, e-HMK : VERSION AVEC hydrovar X	89
e-HMH : VERSION AVEC HYDROVAR HVL	•
e-HIVIN (S. D. 2000 (4.25 (S.C.)	05
HYDROVAR (ErP 2009/125/EC)	11
ANNEXE TECHNIQUE	
ANNEXE TECHNIQUE	

SÉRIES e-HM RENDEMENT HYDRAULIQUE À 50 Hz

SÉRIES e-HM Pompe multicellulaire horizontale haut rendement SPÉCIFICATIONS

Nos clients sont au coeur de notre activité.

De nombreuses années de collaboration avec eux sur les différents marchés et dans le monde entier nous ont appris que le marché des services du bâtiment exige une conception spécifique des pompes pour relever le défi de l'économie d'énergie. Les segments industriels ont besoin de pompes compactes, fiables et personnalisées pour garantir des performances optimales des systèmes et une qualité continue de la production.

Nous avons par conséquent développé une vaste gamme de pompes multicellulaires horizontales, e-HM, pour pouvoir offrir des solutions dédiées appropriées pour les applications et les installations spéciales pour l'industrie et les services du bâtiment.

CONCEPTION DES POMPES

L'e-HM est une pompe centrifuge à haute pression, multicellulaire et horizontale, non auto-amorçante, à aspiration axiale. Elle dispose d'une admission filetée axiale et d'une sortie filetée radiale. Les pompes ont un design monobloc et sont équipées de moteurs Lowara non standard. La e-HM est équipée d'une garniture mécanique.

Les e-HM sont des pompes hautement modulaires, dotées d'un design hydraulique innovant qui assure un haut rendement et un temps moyen entre défaillances accru.

Les pompes e-HM sont disponibles en deux configurations différentes :

- Design « Compact » pour les tailles 1HM, 3HM et 5HM jusqu'à 6 étages
- Design « Sleeve » pour les tailles 1HM, 3HM et 5HM jusqu'à 7 étages et plus ; tous les modèles 10HM, 15HM et 22HM. Le design « Compact » comporte un corps de pompe monobloc en acier inoxydable, directement relié à la bride du moteur. La version « Compact » possède un seul joint torique pour l'étanchéité du boîtier, ce qui réduit considérablement les risques de fuite.

La version « Sleeve » est composée d'un manchon extérieur en

CARACTÉRISTIQUES TECHNIQUES POMPE

- Débit : jusqu'à 29 m³/h.
- Hauteur manométrique : jusqu'à 159 m.
- Température ambiante :
 - pour la version monophasée : de -15°C à +45°C.
 - pour la version triphasée : de -15°C à +50°C.
- Température minimum du liquide pompé : de -10°C à -30°C selon le matériau du joint.
- Température maximum du liquide pompé :
 - pour la version monophasée : + +90 °C.
 - pour la version triphasée : jusqu'à +120°C selon le modèle et la garniture mécanique.
- Pression de service maximum :
 - pour les pompes avec roue en technopolymère : 10 bar (PN 10).
 - pour les pompes avec roue en acier inoxydable : jusqu'à 16 bar (PN 16) selon le modèle et la garniture mécanique.
- Connexions: filetage Rp pour les collecteurs d'aspiration et de refoulement.
- Performances hydrauliques conformes à la norme ISO 9906:2012 - Classe 3B (ex-ISO 9906:1999 - Annexe A).

SECTEURS D'APPLICATION

SERVICES DU BÂTIMENT. INDUSTRIE.

acier inoxydable soudé au TIG et d'un corps d'aspiration séparé, maintenus par un support de pompe en aluminium moulé et par des tirants en acier inoxydable vissés dans la bride du moteur.

Les pompes e-HM sont disponibles en trois combinaisons de matériaux différentes :

- HM..P: corps de pompe en acier inoxydable (EN 1.4301/ AISI 304) avec roue en technopolymère pour les tailles 1HM, 3HM, 5HM et 10HM jusqu'à 6 étages.
- HM..S : entièrement en acier inoxydable (EN 1.4301/ AISI 304)
- HM..N: entièrement en acier inoxydable (EN 1.4401/ AISI 316)

MOTEUR

Les pompes e-HM sont équipées de moteurs de surface conçus et réalisés conformément aux normes EN. La série e-HM peut également être équipée de variateurs de vitesse.

- Moteur à court-circuit électrique en cage d'écureuil (TEFC) de type fermé, refroidi par air.
- 2-pôles.
- Indice de protection IP 55 pour le moteur uniquement (EN 60034-5).
- ÎP X5 pour l'électropompe (EN 60335-1).
- Classe d'isolation 155 (F).
- Rendement selon la norme EN 60034-1.
- Tension standard :
- Monophasé: 220-240 V, 50 Hz.
- Triphasé :
- 220-240/380-415 V, 50 Hz, pour les puissances jusqu'à 3 kW. 380/415/660-690 V, 50 Hz, pour les puissances supérieures à 3 kW.
- Classe de rendement :
- **IE2** pour tous les moteurs monophasés et pour les moteurs triphasée de 0,12 à 0,749 kW,
- **IE3** pour les moteurs triphasés de 0,75 à 5,5 kW.

DÉCLINAISON DE LA GAMME

La série e-HM est disponible en tant que :

- électropompe à vitesse fixe.
- Système à vitesse variable

Les pompes e-HM sont disponibles dans une version adaptée pour le contact avec de l'eau potable.

SÉRIES e-HM APPLICATIONS ET AVANTAGES - Services du bâtiment

La série e-HM et les différentes configurations disponibles ont été conçues pour couvrir une vaste gamme d'applications pour les petits bâtiments résidentiels ou commerciaux, de l'approvisionnement en eau aux systèmes de surpression, ainsi que le chauffage et la climatisation.

Applications

La série e-HM peut être installée aussi bien dans les maisons individuelles que dans les petits et moyens bâtiments résidentiels.

La série e-HM sera également votre choix préféré pour l'approvisionnement en eau et la surpression dans les bureaux et les magasins de petite taille. La série e-HM peut également être installée dans les systèmes d'irrigation de petite taille et de taille moyenne.

Avantages

Période de récupération : L'installation de la série e-HM garantit une période de récupération très courte, car le rendement supérieur fait de l'e-HM la pompe à vitesse fixe la moins gourmande en énergie sur le marché.

Fiabilité: La série e-HM assure également un fonctionnement fiable dans le temps grâce à sa conception robuste et innovante. Le fonctionnement à vitesse variable réduit la contrainte mécanique sur les composants de la pompe et les coups de bélier lors de l'arrêt.

Confort : La série e-HM garantit également un confort accru pour l'utilisateur grâce à son fonctionnement silencieux.

La combinaison de la série e-HM et des variateurs de vitesse intégrés assure une pression constante à tous les points d'eau de votre bâtiment et une température constante même lorsque d'autres robinets sont ouverts!

Fonctions

- Design compact avec performances optimales.
- Large gamme de performances avec 6 tailles et débit jusqu'à 29 m³/h.
- Design polyvalent sur les tailles plus petites (jusqu'à 5HM).
 - Version compacte avec roues en technopolymère pour une installation dans des espaces réduits.
 - Version haut rendement avec roues en acier inoxydable, lorsque l'économie d'énergie est la priorité.
- Conception robuste et silencieuse pour les tailles plus grandes (de 10HM à 22HM) en raison de la configuration du manchon.
- Moteurs Lowara IE2/IE3: hautes performances et fonctionnement silencieux.
- Acier inoxydable pour le corps de pompe et les principaux composants en contact avec le liquide pompé.
- « Design à joint torique minimaliste » qui réduit considérablement les faiblesses de la garniture (1 joint torique pour Compact, 2 pour Sleeve).

SÉRIES e-HM APPLICATIONS ET AVANTAGES - Industrie

La série e-HM et les différentes configurations et options disponibles de série ont été conçues pour couvrir une large gamme d'applications industrielles : machines de lavage et de nettoyage, applications de refroidissement et de chauffage, traitement et filtration de l'eau.

Applications

La série e-HM peut être installée sur les machines où la compacité et les performances élevées sont un impératif ou dans les procédés industriels où l'utilisateur cherche une conception modulaire fiable avec un encombrement vertical réduit.

La série e-HM offre également une large gamme d'options de série pour répondre à toutes les exigences de l'industrie. Les différents matériaux et configurations disponibles permettent à la série e-HM de fonctionner avec une vaste plage de températures de liquides, allant de -30° C à $+120^{\circ}$ C.

Fiabilité: La série e-HM a été conçue pour supporter les applications industrielles exigeantes. Par exemple, la roue équilibrée e-HM aide à réduire la poussée axiale supportée par le roulement du moteur, ce qui prolonge sa durée de vie, tandis que l'épaisseur du corps de la pompe a été accrue de 20 % pour permettre un fonctionnement en service intensif.

Polyvalence: La série e-HM a été conçue pour être modulaire, offrant deux configurations mécaniques différentes (conception très compacte ou hautement efficace) et de multiples exécutions de matériaux (de la roue en technopolymère et du corps de pompe en AISI 304 à l'exécution complète en AISI 316) et de traitement de surface (électropolissage et passivation). De nombreuses options de série rendent l'e-HM adaptée à un grand nombre d'applications différentes.

Performances: La série e-HM offre le meilleur rendement de sa catégorie, jusqu'à 72 %, ce qui signifie une économie d'énergie de 30 % en moyenne par rapport à une conception de pompe similaire sur le marché. La série e-HM est clairement le choix idéal pour répondre à toutes les exigences d'efficacité ou simplement pour économiser de l'argent dans votre installation et vos processus.

Une plate-forme globale : la série e-HM est assemblée dans différentes usines de par le monde afin d'être toujours plus proche de nos clients. En plus de notre engagement à réduire l'empreinte carbone avec la série e-HM, cette plate-forme globale assure la disponibilité de la même conception avec les mêmes processus de qualité partout dans le monde.

Fonctions

- Large gamme de performances avec 6 tailles, débit jusqu'à 29 m³/h, pression jusqu'à 159 mètres.
- Plus de 85 % de la gamme a la même hauteur d'aspiration (90 mm), ce qui facilite l'installation ou la mise à niveau du système.
- Large plage de températures du liquide pompé :
 -30°C à +120°C (avec roues en acier inoxydable).
- Vaste plage de tensions pour des applications mondiales.
- Disponibilité de la version de moteur UL (cURus) pour le marché nord-américain (moteurs triphasés à 60 Hz). Les moteurs UL sont conformes aux exigences Premium Efficiency du US Department of Energy.
- « Design à joint torique minimaliste » qui réduit considérablement les faiblesses de la garniture (1 joint torique pour Compact, 2 pour Sleeve).
- Moteurs Lowara IE2/IE3: hautes performances et fonctionnement silencieux.

SÉRIES e-HM CARACTÉRISTIQUES GÉNÉRALES

SÉRIES HMP	1	3	5	10	
Débit de rendement max. (m³/h)	1,8	3,0	5,0	10,6	
Plage débit (m³/h)	0,7÷2,4	1,2÷4,2	2,4÷7,2	5÷14	
Hauteur d'élévation maximale (m)	69,3	72,7	73,8	91,7	
Puissance moteur (kW)	0,30÷0,75	0,30÷1,1	0,40÷1,5	1,1÷3	
Max h (%) pompe	35	46	55	63	
Température du liquide pompé (°C)	-30 +90 (selon le modèle et la garniture mécanique)				

1-10hmp_2p50-fr_d_tg

SÉRIES HMS - HMN	1	3	5	10	15	22
Débit de rendement max. (m³/h)	1,6	3,0	5,8	10,6	17,3	20,0
Plage débit (m³/h)	$0,7 \div 2,4$	1,2÷4,4	2,4÷8,5	5÷14	8÷24	11÷29
Hauteur d'élévation maximale (m)	151	159	159	158	102	76,4
Puissance moteur (kW)	0,30÷1,5	0,30÷2,2	0,30÷3	0,75÷5,5	1,5÷5,5	2,2÷5,5
Max h (%) pompe	49	58	69	71	72	71
Température du liquide pompé (°C)	-30 +90/120 (selon le modèle et la garniture mécanique)					

1-22hm_2p50-fr_d_tg

CONNEXIONS

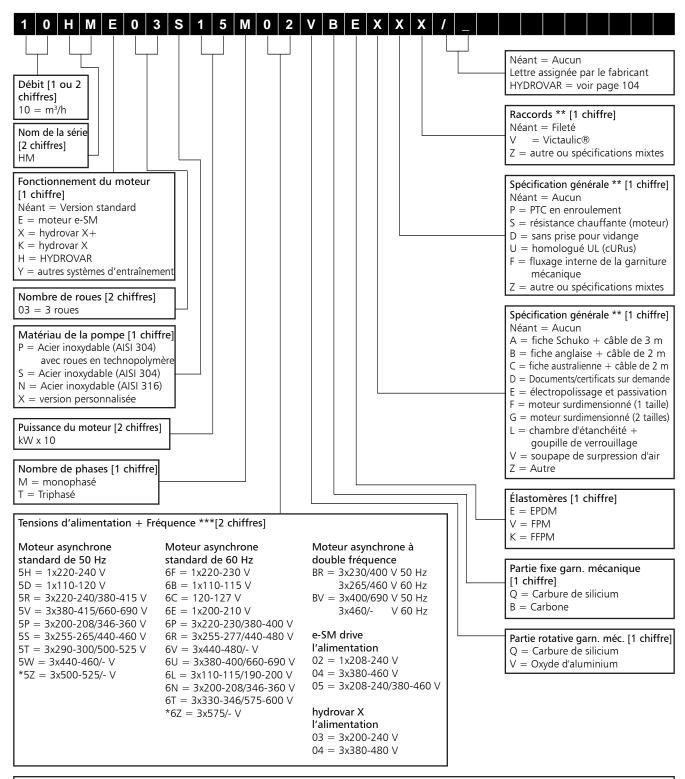
TVDF		SÉRIES HMP - HMS - HMN					
''	ТҮРЕ		3	5	10	15	22
Taraudage Rp	aspiration	1	1	1 1/4	1 1/2	2	2
(de série)	refoulement	1	1	1	1 1/4	1 1/2	1 1/2
Taraudage NPT	aspiration	1"	1"	1" 1/4	1" 1/2	2"	2"
(sur demande)	refoulement	1"	1"	1"	1" 1/4	1" 1/2	1" 1/2
Victaulic® DN	aspiration	25	25	32	40	50	50
(sur demande)	refoulement	25	25	25	32	40	40

1-22hm_2p50-fr_b_tc

TEMPÉRATURE DE STOCKAGE ET TRANSPORT

de -40° C à $+60^{\circ}$ C

POMPES (ErP 2009/125/EC)


Avec les directives « Produits consommateurs d'énergie » (EuP 2005/32/EC) et « Produits liés à l'énergie » (ErP 2009/125/EC), la Commission européenne a établi des critères pour promouvoir l'utilisation de produits à basse consommation d'énergie.

Parmi les différents produits pris en compte, il existe également des types de pompes avec les caractéristiques définies par le **Règlement (EU) n° 547/2012**, appliquant les exigences des Directives EuP et ErP.

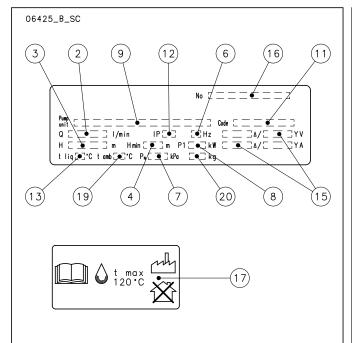
Les pompes multicellulaires horizontales ne sont actuellement pas incluses dans le champ du Règlement.

SÉRIES e-HM CODE D'IDENTIFICATION

EXEMPLE: 10HME03S15M02VBE

10 = débit de 10 m³/h, HM = électropompe de la série e-HM, E = accouplement e-SM (SMART), 03 = nombre de roues (3), S = version en acier inoxydable (AISI 304), 15 = puissance nominale du moteur de 1,5 kW, M = monophasé, 02 = alimentation e-SM 1x208-240, VBE = garniture mécanique en aluminium/carbone et élastomères EPDM.

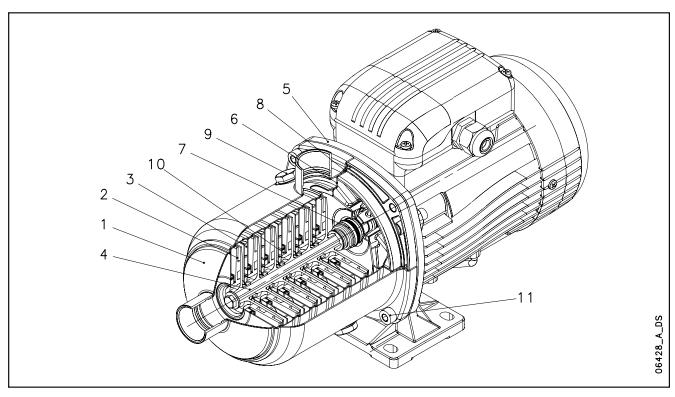
Pour en savoir plus sur les configurations spéciales, veuillez contacter notre réseau de vente.


^{*} Pour utilisations autres que selon EN 60335-2-41.

^{**} S'il n'y a aucun caractère de spécification générale sur la lettre à droite, le caractère est nul, sinon « X ».

^{***} Pour la tension électrique disponible, voir page 19.

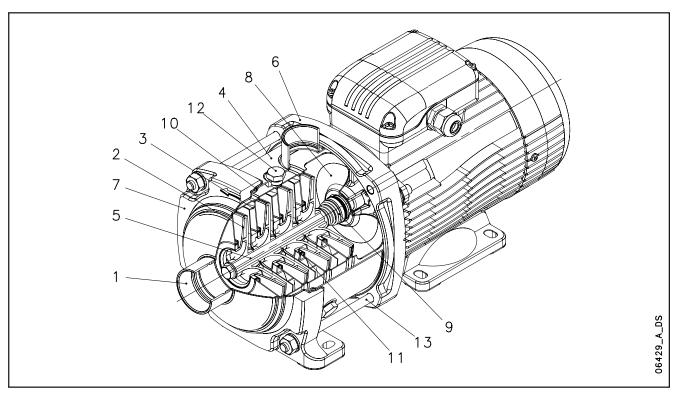
SÉRIES e-HM PLAQUE SIGNALÉTIQUE DE LA POMPE ÉLECTRIQUE



LÉGENDE

- 2 Plage de capacité
- 3 Plage hauteur manométrique
- 4 Hauteur minimale (EN 60335-2-41)
- 6 Fréquence
- 7 Pression de service maximum
- 8 Puissance absorbée du groupe électropompe
- 9 Pompe / type de pompe électrique
- 11 Référence pompe électrique/pièce
- 12 Indice de protection
- 13 Température maximale du liquide durant le fonctionnement (selon EN 60335-2-41)
- 15 Plage de tension nominale
- 16 Numéro de série (date + numéro progressif)
- 17 Température maximale du liquide durant le fonctionnement (autre que selon EN 60335-2-41)
- 19 Température ambiante de service maximale
- 20 Poids de l'électropompe

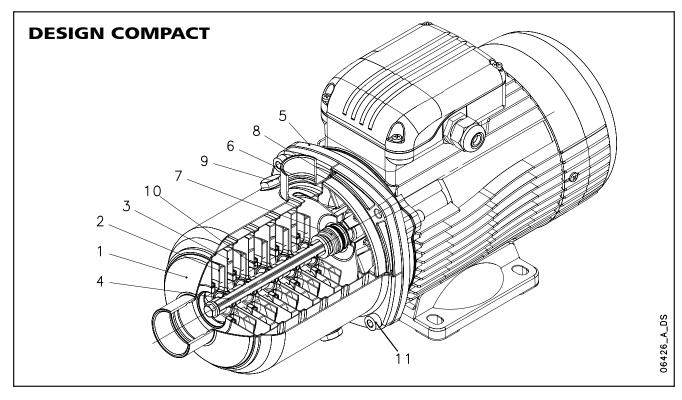
SÉRIES 1, 3, 5 HM..P VUE EN COUPE ÉLECTROPOMPE ET PRINCIPAUX COMPOSANTS


TABLEAU DES MATÉRIAUX

REP. N.	МОМ	MATÉRIAU NORMES DE RÉFÉRENCE				
KEP. IV.			EUROPE	USA		
1	Corps de pompe	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304		
2	Roue	Technopolymère (PPO+PS+30%G	GF / PPE+PS+30%GF)			
3	Diffuseur	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304		
5	Arbre	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304		
5	Adaptateur	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-		
6	Boîtier d'étanchéité	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304		
7	Garniture mécanique	Céramique/carbone/EPDM				
8	Élastomères	EPDM				
9	Bouchons de remplissage/vidange	Acier inoxydable	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316		
10	Bague d'usure	Technopolymère (PPS)				
11	Boulons et vis	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304		

1-3-5hm-p-fr_c_tm

SÉRIE 10 HM..P VUE EN COUPE ÉLECTROPOMPE ET PRINCIPAUX COMPOSANTS


TABLEAU DES MATÉRIAUX

N°	NOM	MATÉRIAU	NORMES DE RÉFÉRENC	E		
RÉF.			EUROPE	USA		
1	Tête de pompe	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304		
2	Roue	Technopolymère (PPO+PS+30%G	F / PPE+PS+30%GF)			
3	Diffuseur	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304		
4	Chemise externe	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304		
5	Arbre	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304		
6	Adaptateur	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-		
7	Bague avec pied	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-		
8	Boîtier d'étanchéité	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304		
9	Garniture mécanique	Céramique/carbone/EPDM				
10	Élastomères	EPDM				
11	Bague d'usure	Technopolymère (PPS)				
12	Bouchons de remplissage/vidange	Acier inoxydable	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316		
13	Tirants	Acier inoxydable	EN 10088-1-X17CrNi16-2 (1.4057)	AISI 431		

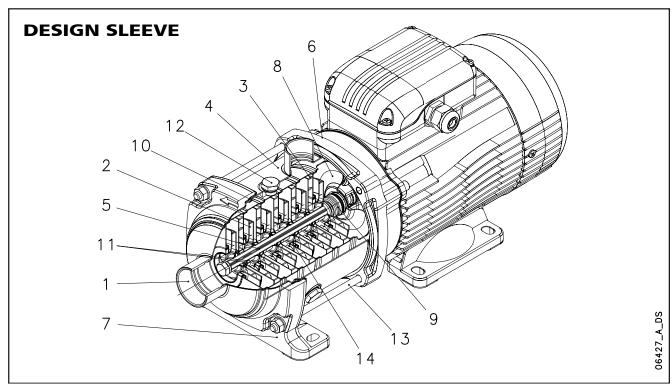
10hm-p-fr_b_tm

SÉRIES 1, 3, 5 HM..S - HM..N VUE EN COUPE ÉLECTROPOMPE ET PRINCIPAUX COMPOSANTS

TABLEAU DES MATÉRIAUX SÉRIE HM..S

N°	DÉSIGNATION	MATÉRIAU	NORMES DE RÉFÉRENCE		
RÉF.			EUROPÉENNE	ÉTATS-UNIS	
1	Corps de pompe	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304	
2	Roue	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304	
3	Diffuseur	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304	
4	Arbre	Acier inoxydable	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316	
5	Lanterne	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-	
6	Disque porte-garniture	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304	
7	Garniture mécanique	Céramique / Carbone / EPDM			
8	Élastomères	EPDM			
9	Bouchon de remplissage/vidange	Acier inoxydable	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316	
10	Bague d'usure	Technopolymère (PPS)		-	
11	Visserie	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304	

1-3-5hm-cp-s-fr_a_tm


TABLEAU DES MATÉRIAUX SÉRIE HM..N

N°	DÉSIGNATION	MATÉRIAU	NORMES DE RÉFÉRENCE	
RÉF.			EUROPÉENNE	ÉTATS-UNIS
1	Corps de pompe	Acier inoxydable	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
2	Roue	Acier inoxydable	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
3	Diffuseur	Acier inoxydable	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
4	Arbre	Acier inoxydable	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
5	Lanterne	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
6	Disque porte-garniture	Acier inoxydable	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
7	Garniture mécanique	Céramique / Carbone / EPDM		
8	Élastomères	EPDM		
9	Bouchon de remplissage/vidange	Acier inoxydable	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
10	Bague d'usure	Technopolymère (PPS)		
11	Visserie	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304

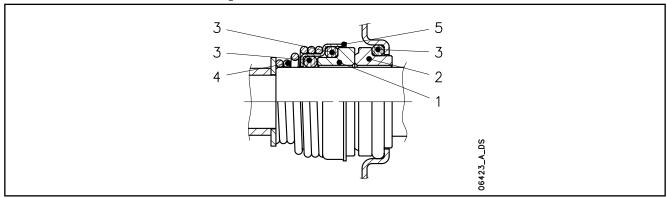
1-3-5hm-cp-n-fr_a_tm

SÉRIES 1, 3, 5, 10, 15, 22 HM..S - HM..N VUE EN COUPE ÉLECTROPOMPE ET PRINCIPAUX COMPOSANTS

TABLEAU DES MATÉRIAUX SÉRIE HM..S

N°	DÉSIGNATION	MATÉRIAU	NORMES DE RÉFÉRENCE	
RÉF.			EUROPÉENNE	ÉTATS-UNIS
1	Tête d'aspiration	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
2	Roue	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
3	Diffuseur	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
4	Chemise extérieure	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
5	Arbre	Acier inoxydable	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
6	Lanterne	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
7	Pièce support	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
8	Disque porte-garniture	Acier inoxydable	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
9	Garniture mécanique	Céramique/Carbone/EPDM (PN10)	- Carbure de silicium/Carbone/EPDM (PN16)	
10	Élastomères	EPDM		
11	Chemise d'arbre et douille	Carbure de tungstène		
12	Bouchon de remplissage/vidange	Acier inoxydable	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
13	Tirants	Acier inoxydable	EN 10088-1-X17CrNi16-2 (1.4057)	AISI 431
14	Bague d'usure	Technopolymère (PPS)		

1-22hm-cm-s-fr_a_tm


TABLEAU DES MATÉRIAUX SÉRIE HM..N

N°	DÉSIGNATION	MATÉRIAU	NORMES DE RÉFÉRENCE	
RÉF.			EUROPÉENNE	ÉTATS-UNIS
1	Tête d'aspiration	Acier inoxydable	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
2	Roue	Acier inoxydable	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
3	Diffuseur	Acier inoxydable	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
4	Chemise extérieure	Acier inoxydable	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
5	Arbre	Acier inoxydable	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
6	Lanterne	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
7	Pièce support	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
8	Disque porte-garniture	Acier inoxydable	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
9	Garniture mécanique	Céramique/Carbone/EPDM (PN10	0) - Carbure de silicium/Carbone/EPDM (PN16	i)
10	Élastomères	EPDM		
11	Chemise d'arbre et douille	Carbure de tungstène		
12	Bouchon de remplissage/vidange	Acier inoxydable	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
13	Tirants	Acier inoxydable	EN 10088-1-X17CrNi16-2 (1.4057)	AISI 431
14	Bague d'usure	Technopolymère (PPS)		

1-22hm-cam-n-fr_a_tm

SÉRIES e-HM GARNITURES MECANIQUES

LISTE DES MATÉRIAUX

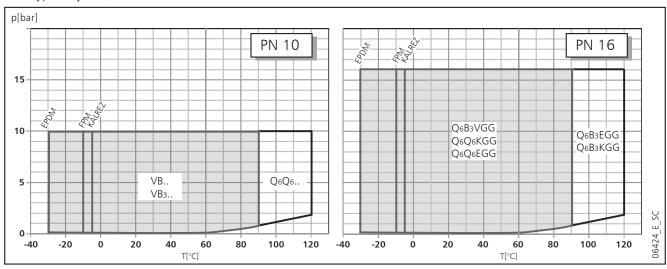
POSITION 1 - 2	POSITION 3	POSITION 4 - 5
V : Oxyde d'aluminium	E : EPDM	G : AISI 316
Q ₆ : Carbure de silicium	E ₂ : EPDM	
B : Carbone, imprégné de résine	V : FPM	
B ₃ : Graphite	K : FFPM	

TYPE DE JOINT

1-22hm_ten-mec-fr_c_tm

	POSITION													
TYPE	1	2	3	4	5	TEMPÉRATURE b)	PRESSION DE FONCTIONNEMENT							
	PARTIE MOBILE	PARTIE FIXE	ÉLASTOMÈRES	RESSORTS	AUTRES COMPOSANTS	(°C)								
		JOINT	MÉCANIQU	E STAN	DARD a)									
VB₃E₂GG	V	B ₃	E ₂	G	G	-30 ÷ 90	PN10							
Q ₆ B₃EGG	Q_6	B ₃	E	G	G	-30 ÷ 120	PN16							
	AUTR	ES TYPES DE (GARNITURE	MÉCAI	NIQUE DISPONIBL	ES								
VB₃VGG (Ø14 mm)	V	B ₃	V	G	G	-10 ÷ 90	PN10							
VBVGG (Ø17 mm)	V	В	V	G	G	-10 ÷ 90	PN10							
Q6B3VGG	Q_6	B_3	V	G	G	-10 ÷ 90	PN16							
Q6B3KGG	Q_6	B_3	K	G	G	-5 ÷ 120	PN16							
Q6Q6KGG	Q_6	Q_6	K	G	G	-5 ÷ 90 (120)	PN16 (PN10)							
Q6Q6EGG	Q_6	Q_6	E	G	G	-30 ÷ 90 (120)	PN16 (PN10)							

a) Convient pour l'utilisation avec l'eau potable.


1-22hm-tipi-ten-mec-fr_f_tc

Élastomère FPM (V) : pour les applications dans l'eau ou les solutions aqueuses, la limite de température maximale est de 80 °C.

LIMITES APPLICATION PRESSION / TEMPÉRATURE POUR POMPE COMPLÈTE

La limite de pression peut être différente selon les facteurs suivants :

- nombre d'étages, voir la colonne PB des tableaux DIMENSIONS ET POIDS ;
- type de joint, voir la colonne « Pression de fonctionnement » du tableau TYPE DE JOINT.

b) Pour les versions monophasées et pour HM..P, limiter la température à +90°C.

a xylem brand TABLEAU DE COMPATIBILITÉ DES MATÉRIAUX AU CONTACT DE LA PLUPART DES LIQUIDES LES PLUS UTILISÉS

LIQUIDE	CONCENTRATION	TEMPÉRAT.		VERSION		ÉLASTOM.
		MIN/MAX				
	(%)	(°C)	PLASTIQUE	AISI 304	AISI 316	
Acétone	10	-10 +90		•	•	Е
Acide chlorhydrique	2	-10 +25	•		•	V
Acide citrique	10	-10 +70	•	•	•	E
Acide sulfurique	2	-10 +25	•	•	•	V
Acide urique	80	-10 +80		•	•	Е
Alcool dénaturé	100	-5 +70	•	•	•	Е
Alcool éthylique	100	-30 +50	•	•	•	Е
Alcool méthylique	100	-30 +50	•	•	•	Е
Alcool propylique (propanol)	100	-5 +80		•	•	Е
Ammoniac	10	-10 +40	•	•	•	Е
Benzène	10	-10 +50		•	•	V
Bicarbonate de sodium	à saturation		•	•	•	Е
Diesel	100	-10 +80	•	•	•	V
Eau	100	10 +120	•	•	•	Е
Eau de mer	100	-10 +30			•	V
(max. 1000 ppm Chlorures)	100	-10 +30				V
Eau désionisée, déminéralisée	100	10 +110	•	•	•	V
Émulsion huile et eau	all	-5 +90		•	•	V
Éthylène glycol	50	-30 +120		•	•	Е
Fluide hydraulique	100	-5 +110		•	•	V
Glycérine	100	20 +90	•	•	•	Е
Huile de coupe	100	-5 +110		•	•	V
Huile diathermique	100	-5 +110		•	•	V
Huile minérale	100	-5 +110		•	•	V
Huile végétale	100	10 +110		•	•	V
Hydroxyde de sodium	20	10 +70	•	•	•	Е
Hypochlorite de sodium	1	-10 +25	•		•	V
Mélanges eau-détergents	20	10 +100	•	•	•	Е
Phosphates et polyphosphates	10	-5 +90	•	•	•	V
Propylène Glycol	50	-30 +120		•	•	Е
Toluène	10	-10 +50		•	•	V

tab-comp-fr_a_tm

Le tableau ci-dessus indique la compatibilité des matériaux selon le liquide pompé.

Vérifiez le poids spécifique ou la viscosité du liquide car ils pourraient influer sur la puissance absorbée du moteur et sur les performances hydrauliques.

Pour en savoir plus, veuillez contacter notre réseau de vente.

SÉRIES e-HM MOTEURS (ErP 2009/125/EC)

- Moteurs court-circuités en cage d'écureuil de type fermé avec ventilation extérieure (TEFC).
- Indice de protection IP 55.
- Classe d'isolation 155 (F).
- Performances électriques conformes à la norme EN 60034-1.
- Équipée de moteurs de surface **monophasés** avec un niveau de rendement **IE2**.
- Moteurs de surface **triphasés** fournis avec niveau de rendement **IE2** pour puissance < 0,75 kW, niveau de rendement **IE3** pour puissance ≥ 0,75 kW de série conformément aux normes EN 60034-30:2009 et EN 60034-30-1:2014.
- Presse-étoupe avec métrique selon la norme EN 50262.
- Version monophasée: de 0,55 à 1,5 kW (2 pôles) 220-240 V 50 Hz Protection anti-surcharge et réinitialisation automatique intégrée Température ambiante maximale: 45°C.
- Version triphasée:
 de 0,30 à 5,5 kW (2 pôles)
 220-240/380-415 V 50 Hz pour les puissances jusqu'à 3 kW.
 380-415/660-690 V 50 Hz pour les puissances inférieure à 3 kW.
 Protection contre les surcharges à fournir par l'utilisateur.
 Température ambiante maximale: 50 °C

À partir du 1er juillet 2023, conformément aux **Règlements (UE) 2019/1781** et 2021/341, les moteurs de surface 50 Hz, 60 Hz ou 50/60 Hz **triphasés** avec **une puissance allant de 0,12 à 0,749 kW** doivent avoir un niveau de rendement minimum **IE2**; ceux d'une puissance allant **de 0,75 à 74,9 kW** doivent avoir un niveau de rendement minimum **IE3**. Les **moteurs de surface monophasés** avec **des puissances à partir de 0,12 kW** doivent avoir un niveau minimum de rendement **IE2**.

Les tableaux suivants indiquent également les informations impératives conformément à l'Annexe I, section 2, des règlements susmentionnés.

MOTEURS MONOPHASÉS À 50 Hz, 2 PÔLES

		E IEC	e de uction	COURANT D'ENTRÉE				ATEUR DONNÉES POUR TENSION 230 V / 50 HZ		<u>.</u>	CONDIT. DE	FONCTIONN	IEMENT**			
P_N	TYPE DE MOTEUR	AILL	Form	In (A)							Tn			s.n.m.	min/max	
kW	TIFE DE MOTEOR	F	F 8	220-240 V	μF	V	min ⁻¹	ls / In	η%	cosφ	Nm	Ts/Tn	Tm/Tn	m	°C	
0,55	SM71HM/1055 E2	71		3,33-3,19	16	450	2810	4,16	74,1	0,99	1,87	0,69	2,13)		
0,75	SM80HM/1075 E2	80		4,38-4,27	25	450	2865	5,11	77,4	0,97	2,50	0,40	2,26	000	15/45	Non
1,1	SM80HM/1115 E2	80	PEC	6,26-5,93	30	450	2860	4,78	79,6	0,98	3,67	0,50	2,14	> 1	-15	ž
1,5	PLM90HM/1155 E2	90	S	8,41-7,87	50	450	2890	6,71	81,3	0,97	4,95	0,59	2,78			

^{**} Conditions de fonctionnement liées uniquement au moteur. Pour la pompe électrique, voir l'OIM.

1-22hm-motm_2p50-fr_c_te

SÉRIES e-HM MOTEURS TRIPHASÉS 50 Hz, 2 PÔLES

	Fabricant		2	٠,						
	Xylem Service Italia Srl	EC	e de ction	pôles			Données p	our tension 40	0 V / 50 Hz	
	Reg. No. 07520560967	뿌	Forme	de b						
P_N	Montecchio Maggiore Vicenza - Italie	TAILLE	Forme	z z	f _N			T_N		
kW	Modèle		ŏ	_	Hz	cosφ	ls / l _N	Nm	Ts/T _N	Tm/Tn
0,30	SM63HM/303	63				0,63	4,20	1,04	4,18	4,12
0,40	SM63HM/304	63				0,64	4,35	1,37	4,14	4,10
0,50	SM63HM/305	63				0,69	4,72	1,75	4,08	4,00
0,55	SM71HM/305	71				0,71	6,25	1,84	3,96	3,97
0,75	SM80HM/307 E3	80	٦			0,78	7,38	2,48	3,57	3,75
1,1	SM80HM/311 E3	80	ECIAL	2	50	0,79	8,31	3,63	3,95	3,95
1,5	SM80HM/315 E3	80	SP			0,80	8,80	4,96	4,31	4,10
2,2	PLM90HM/322 E3	90				0,80	8,77	7,28	3,72	3,70
3	PLM90HM/330 E3	90				0,79	7,81	9,93	4,26	3,94
4	PLM100HM/340 E3	100				0,85	9,13	13,2	3,82	4,32
5,5	PLM112HM/355 E3	112				0,85	10,5	18,1	4,74	5,11

					Te	ension (J _N					Condition	s de fonctionr	nement **	
		Δ			Υ			Δ		,	Y		Altitude au-	T. amb	
P_N	220 V	230 V	240 V	380 V	400 V	415 V	380 V	400 V	415 V	660 V	690 V	n _N	dessus	min./max.	ATEX
kW						I _N (A)						min ⁻¹	n.d.m. (m)	°C	
0,30	1,66	1,82	1,96	0,96	1,05	1,13	-	-	-	-	-	2715 ÷ 2775			
0,40	2,03	2,18	2,32	1,17	1,26	1,34	-	-	-	-	-	2745 ÷ 2800			
0,50	2,42	2,51	2,65	1,40	1,45	1,53	-	-	-	-	-	2690 ÷ 2765			
0,55	2,46	2,49	2,56	1,42	1,44	1,48	-	-	-	-	-	2835 ÷ 2865			
0,75	2,96	2,94	2,96	1,71	1,70	1,71	1,70	1,69	1,70	0,98	0,98	2875 ÷ 2895			
1,1	4,19	4,14	4,16	2,42	2,39	2,40	2,41	2,38	2,38	1,39	1,37	2870 ÷ 2900	≤ 1000	-15 / 50	Non
1,5	5,56	5,49	5,51	3,21	3,17	3,18	3,21	3,18	3,19	1,85	1,84	2870 ÷ 2895			
2,2	7,97	7,90	7,98	4,60	4,56	4,61	4,57	4,54	4,57	2,64	2,62	2880 ÷ 2900			
3	11,0	11,0	11,2	6,35	6,33	6,44	6,29	6,27	6,34	3,63	3,62	2865 ÷ 2895			
4	13,6	13,4	13,4	7,87	7,75	7,74	7,80	7,62	7,61	4,50	4,40	2885 ÷ 2910			
5,5	18,1	17,9	18,1	10,4	10,4	10,4	10,6	10,5	10,7	6,10	6,05	2880 ÷ 2910			

	Rendement η _N																		
										9,	6								
		∆ 220 V	,		∆ 230 V	1		Δ 240 V Δ 380 V					Δ 400 V				∆ 415 V	'	
\mathbf{P}_{N}	,	Y 380 V	,		Y 400 V	1	Y 415 V			Y 660 V			,	Y 690 V	,				IE
kW	4/4				2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4		
0,30	67,1	69,6	65,0	67,1	66,5	60,2	67,1	63,3	55,7	-	-	-	-	-	-	-	-	-	
0,40	70,4	73,2	68,9	70,4	70,3	64,5	70,4	67,2	60,2	1		-	1	-	1	-	-		2
0,50	73,0	76,1	73,4	73,0	73,8	69,6	73,0	71,3	65,7	1		-	-	-	-	-	-		2
0,55	74,1	74,2	70,4	74,1	73,6	68,8	74,1	72,7	67,1	1		-	1	-	1	-	-		
0,75	82,5	83,1	81,3	82,8	82,7	80,1	82,6	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9	
1,1	84,0	84,7	83,4	84,4	84,5	82,5	84,3	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	
1,5	85,6	86,5	85,8	85,9	86,4	84,9	86,0	86,0	84,0	85,6	86,0	84,0	85,6	86,0	84,0	85,6	86,0	84,0	
2,2	86,5	87,4	86,8	86,4	86,9	85,7	86,6	86,7	85,0	86,4	86,7	85,0	86,4	86,7	85,0	86,4	86,7	85,0	3
3	87,2	88,5	88,3	87,5	88,2	87,5	87,5	87,8	86,4	87,2	87,8	86,4	87,2	87,8	86,4	87,2	87,8	86,4	
4	89,1	90,1	89,2	89,1	90,1	89,2	89,1	90,1	89,2	89,1	90,3	90,4	89,6	90,4	89,9	89,6	90,1	89,2	
5,5	89,5	89,6	88,0	89,5	89,6	88,0	89,5	89,6	88,0	89,5	90,3	89,9	89,7	90,0	89,0	89,6	89,6	88,0	

^{**} Conditions de fonctionnement se référant au moteur uniquement. À propos de l'électropompe, voir les limites dans le manuel de l'utilisateur.

1-22HM-ie3-mott-2p50-fr_c_t

SÉRIES e-HM MOTEURS DISPONIBLES

TYPE DE	1-3-!	5 HM	10-15-22 HM						
MOTEUR	COMPACTE	CHEMISÉE	СОМРАСТЕ	CHEMISÉE					
SM63HM	•	-	-	-					
SM71HM	•	•	-	-					
SM80HM	•	•	•	•					
PLM90HM	-	•	•	•					
PLM100HM	-	-	-	•					
PLM112HM	-	-	-	•					

^{• =} compatible, - = pas compatible

tab-acc-hm-fr a sc

TENSIONS DE MOTEUR DISPONIBLES, 2 PÔLES

	MONO	PHASÉ											TRII	PHASÉ	Ė							
	50 Hz	60 Hz					50 Hz	!							60 Hz	2		,			50/60 H	z
P _N kW	1 x 220-240	1 × 220-230	P _N kW	3 x 220-230-240/380-400-415	3 x 380-400-415/660-690	3 x 200-208/346-360	3 x 255-265/440-460	3 x 290-300/500-525	3 x 440-460/-	3 x 500-525/-	3 x 220-230/380-400	3 x 255-265-277/440-460-480	3 x 380-400/660-690	3 x 440-460-480/-	3 x 110-115/190-200	3 x 200-208/346-360	3 x 330-346/575-600	3 x 575/-	3 x 575*	3 x 200/400 50 Hz 3 x 208-230/400-480 60 Hz*	3 x 230/400 50 Hz 3 x 265/460 60 Hz	3 x 400/690 50 Hz 3 x 460/- 60 Hz
0,55	S	S	0,30	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	-	-	0	0
0,75	S	S	0,40	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	-	-	0	0
1,10	S	S	0,50	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	-	-	0	0
1,50	S	S	0,55	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0	0	0
			0,75	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0	0	0
			1,1	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0	0	0
			1,5	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0	0	0
			2,2	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0	0	0
			4	S	O S	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0	0	0
			5,5	0	S	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0	0	0

s = Tension standard

Tolérances pour les tensions nominales 50 Hz :

 $\pm~10~\%$ pour chaque valeur de tension indiquée sur la plaque signalétique.

 \pm 5 % pour la plage de tension indiquée sur la plaque signalétique.

60 Hz:

 \pm 10 % pour les valeurs de tension indiquées sur la plaque signalétique.

Seules les tensions nominales sont admises sur les moteurs UL.

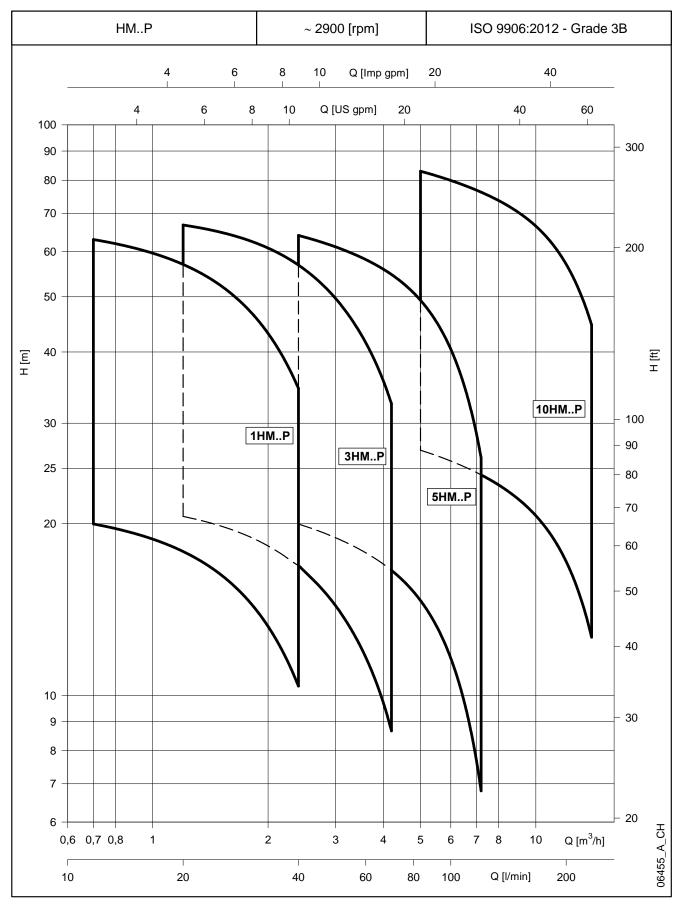
BRUIT DES ÉLECTROPOMPES

Les tableaux ci-dessous montrent les niveaux de pression acoustique moyenne (Lp) mesurés à une distance de 1 m en champ libre selon la norme EN ISO 11203. Les valeurs de bruit sont mesurées sur des moteurs 50 Hz avec une tolérance de 3 dB (A) conformément à la norme EN ISO 4871.

PUISSANCE	[kW]	0,3	0,4	0,5	0,55	0,75	0,95	1,1	1,5	2,2	3	4	5,5
NIVEAU SONORE	LpA [dB]	52	52	52	55	55	55	60	60	60	60	60	60

1-22hm_mot_2p50-fr_b_tr

o = Tension sur demande


^{- =} Non disponible

hm-volt-lowa-fr_e_te

^{*=} moteurs disponibles en version homologuée UL.

SÉRIES HM..P PLAGE DES PERFORMANCES HYDRAULIQUES À 50 Hz, 2 PÔLES

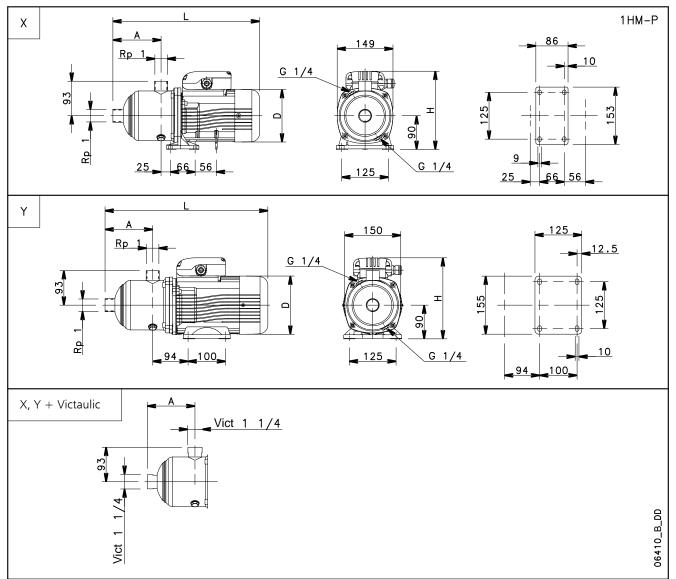
SÉRIES HM..P TABLEAU DES PERFORMANCES HYDRAULIQUES À 50 Hz, 2 PÔLES

TYPE DE	_		MOTEUR	Е	LECTROPO	MPE				Q = D	EBIT			
POMPE	VERSION				*	1	l/min 0	11,7	16,0	21,0	26,0	31,0	36,0	40,0
HMP	ĒŖS	P_N	TYPE	* P ₁	220-240 V	380-415 V	m³/h 0	0,7	1,0	1,3	1,6	1,9	2,2	2,4
	_	kW		kW	Α	Α	н	= HAUT	EUR MAI	NOMÉTR	IQUE TO	TALE EN	MÈTRES	
1HM03		0,55	SM71HM/1055	0,53	2,32	-	34,5	31,3	29,9	27,9	25,5	22,8	19,7	17,1
1HM04	1 ~	0,55	SM71HM/1055	0,63	2,70	-	45,4	41,0	39,0	36,3	33,1	29,4	25,4	21,9
1HM05	~	0,55	SM71HM/1055	0,73	3,12	-	56,1	50,4	47,8	44,3	40,2	35,6	30,5	26,1
1HM06		0,75	SM80HM/1075	0,88	3,91	1	68,8	62,4	59,5	55,5	50,7	45,2	39,1	33,8
1HM02		0,30	SM63HM/303	0,36	1,89	1,09	22,5	20,2	19,2	17,9	16,2	14,4	12,4	10,6
1HM03		0,30	SM63HM/303	0,47	1,94	1,12	32,8	29,2	27,5	25,4	22,9	20,1	17,1	14,5
1HM04	3 ~	0,40	SM63HM/304	0,58	2,34	1,35	44,1	39,3	37,2	34,3	31,0	27,3	23,2	19,8
1HM05		0,50	SM63HM/305	0,69	2,64	1,52	54,4	48,1	45,4	41,7	37,5	32,9	27,8	23,5
1HM06		0,75	SM80HM/307 E3	0,84	2,80	1,62	69,3	63,0	60,1	56,1	51,4	45,9	39,8	34,5

TYPE DE	_		MOTEUR	E	LECTROPO	MPE				Q = D	EBIT			
POMPE	/ERSION				*	1	l/min 0	20,0	28,0	36,0	44,0	52,0	60,0	70,0
HMP	Æ	$\mathbf{P}_{\mathbf{N}}$	TYPE	* P ₁	220-240 V	380-415 V	m³/h 0	1,2	1,7	2,2	2,6	3,1	3,6	4,2
		kW		kW	Α	Α	н	= HAUT	EUR MAI	NOMÉTR	IQUE TO	TALE EN	MÈTRES	
3HM02		0,55	SM71HM/1055	0,49	2,20	-	24,1	22,1	21,1	19,7	17,9	15,9	13,7	10,7
3HM03		0,55	SM71HM/1055	0,63	2,70	1	35,7	32,5	30,8	28,6	25,9	22,9	19,6	15,1
3HM04	1 ~	0,55	SM71HM/1055	0,76	3,29	ı	47,0	42,4	39,9	36,8	33,1	29,1	24,7	18,7
3HM05		0,75	SM80HM/1075	0,96	4,22	-	59,7	54,5	51,7	48,0	43,6	38,5	33,0	25,5
3HM06		1,1	SM80HM/1115	1,16	5,11	ı	72,2	66,2	62,9	58,6	53,3	47,3	40,7	31,6
3HM02		0,30	SM63HM/303	0,44	1,92	1,11	23,2	20,9	19,6	18,1	16,2	14,2	12,0	9,0
3HM03		0,40	SM63HM/304	0,58	2,34	1,35	34,9	31,3	29,3	26,9	24,2	21,1	17,8	13,4
3HM04	3 ~	0,50	SM63HM/305	0,72	2,68	1,55	45,8	40,6	37,8	34,5	30,7	26,7	22,3	16,3
3HM05		0,75	SM80HM/307 E3	0,92	2,96	1,71	60,2	55,1	52,3	48,7	44,2	39,2	33,7	26,2
3HM06		1,1	SM80HM/311 E3	1,10	3,75	2,17	72,7	66,8	63,6	59,3	54,1	48,1	41,5	32,5

TYPE DE	_		MOTEUR	E	LECTROPO	MPE				Q = D	EBIT			
POMPE	Į.				*	1	l/min 0	40,0	53,0	66,0	79,0	92,0	105	120
НМР	/ERSION	$\mathbf{P}_{\mathbf{N}}$	TYPE	* P ₁	220-240 V	380-415 V	m³/h 0	2,4	3,2	4,0	4,7	5,5	6,3	7,2
	_	kW		kW	Α	Α	н	= HAUT	EUR MAI	NOMÉTR	QUE TO	TALE EN	MÈTRES	
5HM02		0,55	SM71HM/1055	0,59	2,57	ı	24,3	20,9	19,6	18,2	16,5	14,4	11,8	8,1
5HM03		0,55	SM71HM/1055	0,78	3,36	-	36,0	30,3	28,2	25,9	23,3	20,1	16,1	10,6
5HM04	1 ~	0,75	SM80HM/1075	1,03	4,58	-	48,6	41,5	38,9	36,0	32,6	28,4	23,1	15,7
5HM05		1,1	SM80HM/1115	1,29	5,67	-	61,0	52,5	49,2	45,7	41,5	36,3	29,8	20,5
5HM06		1,1	SM80HM/1115	1,50	6,66	-	72,9	62,2	58,1	53,7	48,6	42,3	34,4	23,3
5HM02		0,40	SM63HM/304	0,54	2,30	1,33	23,9	20,1	18,7	17,2	15,4	13,3	10,6	6,9
5HM03		0,50	SM63HM/305	0,74	2,70	1,56	35,2	28,8	26,5	24,2	21,5	18,2	14,2	8,6
5HM04	3 ~	1,1	SM80HM/311 E3	1,01	3,60	2,08	49,3	42,9	40,4	37,7	34,5	30,4	25,2	17,8
5HM05		1,1	SM80HM/311 E3	1,24	4,01	2,32	61,4	53,1	49,9	46,4	42,3	37,2	30,6	21,3
5HM06		1,5	SM80HM/315 E3	1,47	4,95	2,86	73,8	64,0	60,2	56,1	51,2	45,0	37,3	26,1

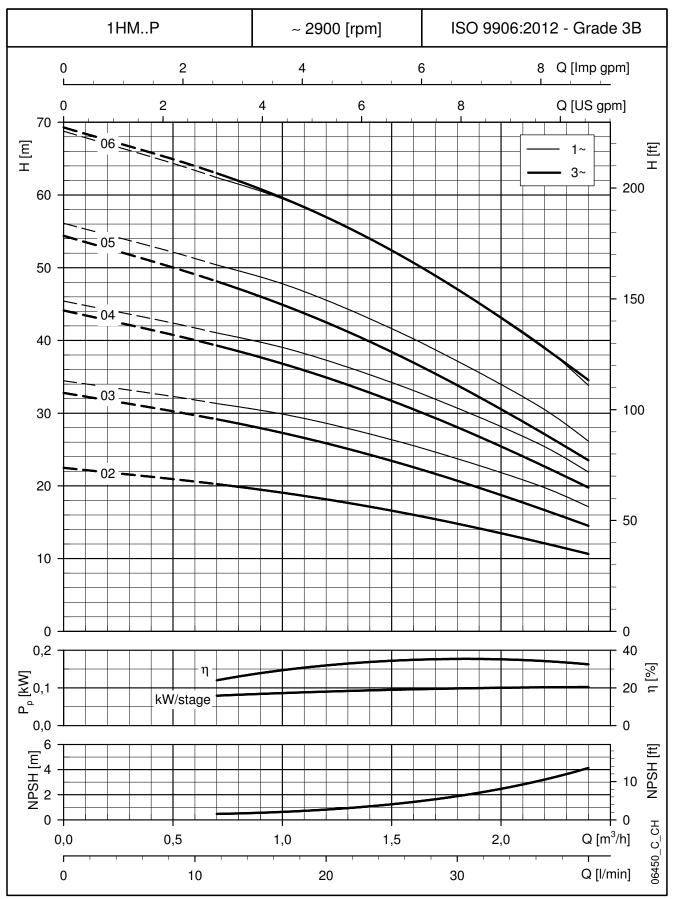
TYPE DE	_		MOTEUR	Е	LECTROPO	MPE				Q = D	EBIT			
POMPE	FRSION				*	1	l/min 0	83,3	108	133	158	183	208	233
НМР	/ERS	$\mathbf{P}_{\mathbf{N}}$	TYPE	* P ₁	220-240 V	380-415 V	m³/h 0	5,0	6,5	8,0	9,5	11,0	12,5	14,0
	١	kW		kW	Α	Α	Н	= HAUT	EUR MAI	NOMÉTR	IQUE TO	TALE EN	MÈTRES	
10HM02	1 ~	1,1	SM80HM/1115	1,28	5,64	-	31,0	27,5	25,9	24,2	22,3	19,9	17,1	13,6
10HM03	1	1,5	PLM90HM/1155	1,82	8,26	-	46,2	41,0	38,7	36,3	33,5	30,2	25,9	20,7
10HM02		1,1	SM80HM/311 E3	1,23	4,00	2,31	31,1	27,8	26,3	24,6	22,7	20,4	17,5	14,1
10HM03		1,5	SM80HM/315 E3	1,75	5,50	3,17	46,2	40,9	38,6	36,2	33,4	30,1	25,8	20,6
10HM04	3 ~	2,2	PLM90HM/322 E3	2,35	7,58	4,38	61,2	55,7	52,7	49,6	46,2	42,0	36,7	30,3
10HM05		3	PLM90HM/330 E3	2,94	10,1	5,83	76,6	69,8	66,2	62,3	58,0	52,8	46,2	38,2
10HM06		3	PLM90HM/330 E3	3,47	11,2	6,45	91,7	83,0	78,5	73,8	68,5	62,2	54,3	44,6


Performances hydrauliques conformes à la norme ISO 9906:2012 - Classe 3B (ex-ISO 9906:1999 - Annexe A)

1-10hm-p-2p50-fr_c_th

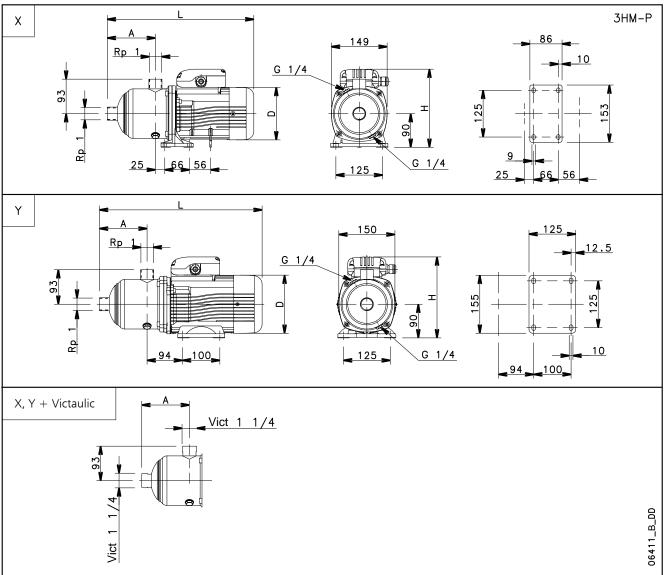
^{*} Valeur maximale dans la plage spécifiée $\,:$ P1 $\,=$ alimentation d'entrée ; l $\,=$ courant d'entrée.

SÉRIES 1HM..P DIMENSIONS ET POIDS À 50 Hz, 2 PÔLES



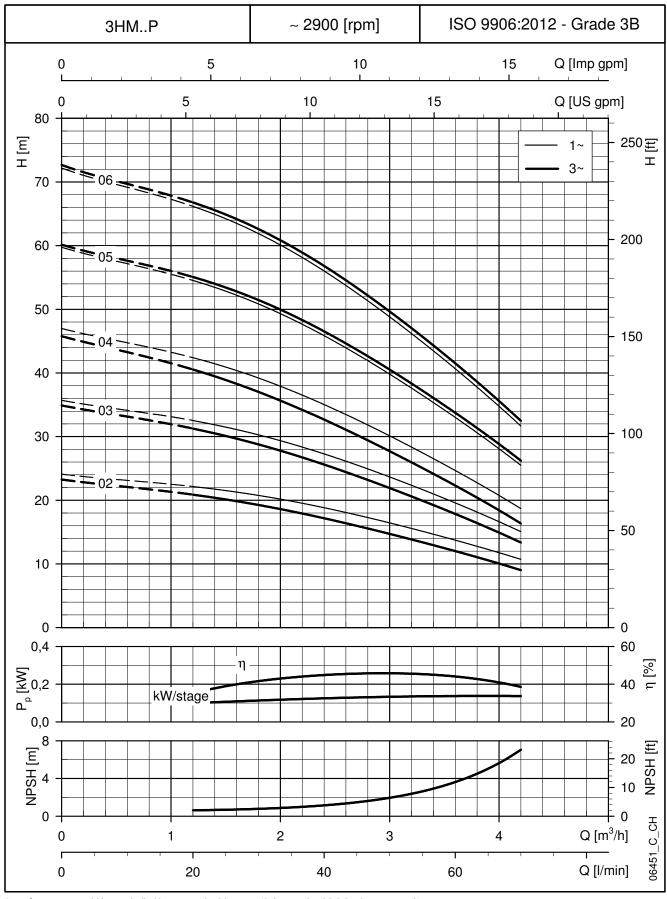
TYPE DE POMPE	VERSION	Réf.	MO ⁻	ΓEUR		DIMENSI	ONS (mm)		PN	POIDS
TIPE DE PONIFE	VERSION	Rei.	kW	TAILLE	Α	D	н	L	bar	kg
1HM03	SÉ		0,55	71	87	140	211	350	10	9
1HM04	PHA	Х	0,55	71	107	140	211	370	10	9
1HM05	MONOPHASÉ		0,55	71	127	140	211	390	10	9
1HM06	ŏ	Υ	0,75	80	147	155	227	455	10	9
1HM02			0,30	63	87	120	201	336	10	6
1HM03	SÉ	X	0,30	63	87	120	201	336	10	6
1HM04	TRIPHASÉ	^	0,40	63	107	120	201	356	10	7
1HM05	TRI		0,50	63	127	120	201	376	10	8
1HM06		Υ	0,75	80	147	155	219	455	10	13

1hm-p-2p50-fr_c_td


SÉRIES 1HM..P CARACTÉRISTIQUES DE FONCTIONNEMENT À 50 Hz, 2 PÔLES

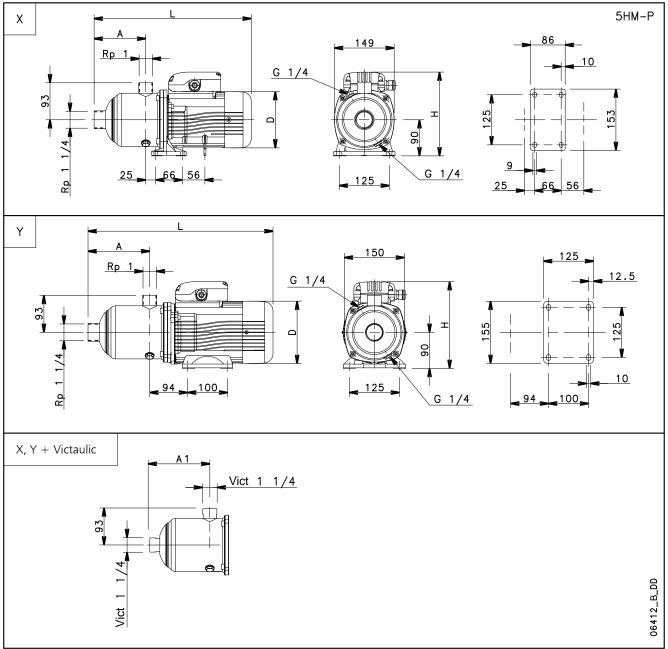
Ces performances sont valables pour les liquides avec une densité $\rho=1$ Kg/dm³ et une viscosité cinématique $\nu=1$ mm²/s.

SÉRIES 3HM..P DIMENSIONS ET POIDS À 50 Hz, 2 PÔLES



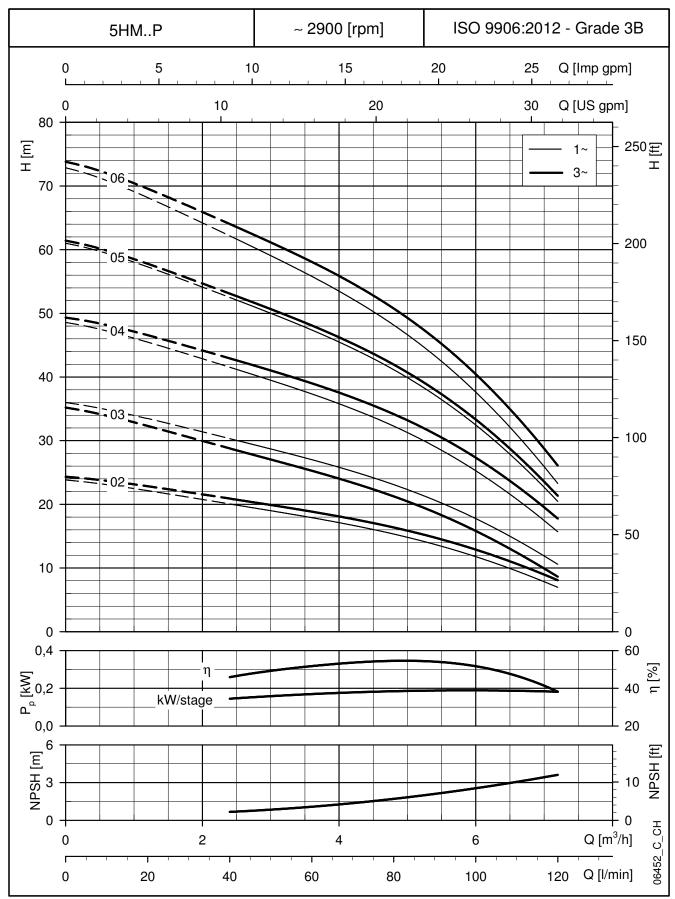
TYPE DE POMPE	VERSION	Réf.	MO	TEUR		DIMENSI	ONS (mm)		PN	POIDS
TIPE DE PONIPE	VERSION	Rei.	kW	TAILLE	Α	D	н	L	bar	kg
3HM02	SIII		0,55	71	87	140	211	350	10	9
3HM03	HASE	Х	0,55	71	87	140	211	350	10	9
3HM04	MONOPHASÉ		0,55	71	107	140	211	370	10	9
3HM05	JO V	_	0,75	80	127	155	227	435	10	10
3HM06	2	ī	1,1	80	147	155	227	455	10	11
3HM02			0,30	63	87	120	201	336	10	6
3HM03	SÉ	X	0,40	63	87	120	201	336	10	6
3HM04	TRIPHASÉ		0,50	63	107	120	201	356	10	7
3HM05	IR	V	0,75	80	127	155	219	435	10	12
3HM06		ľ	1,1	80	147	155	219	455	10	13

3hm-p-2p50-fr_c_td



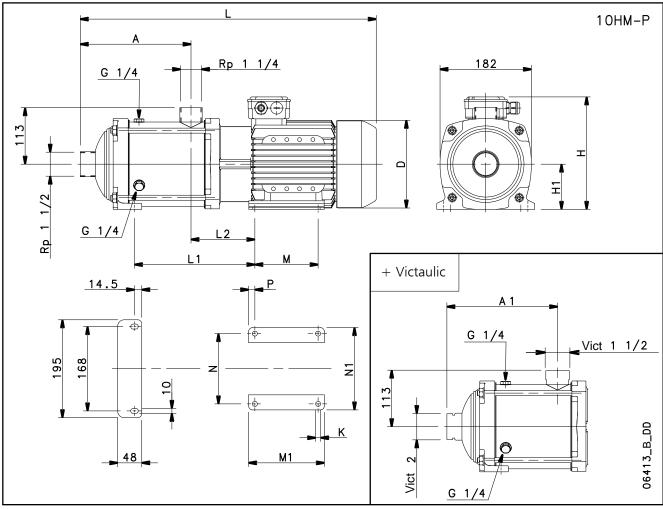
SÉRIES 3HM..P CARACTÉRISTIQUES DE FONCTIONNEMENT À 50 Hz, 2 PÔLES

SÉRIES 5HM..P DIMENSIONS ET POIDS À 50 Hz, 2 PÔLES



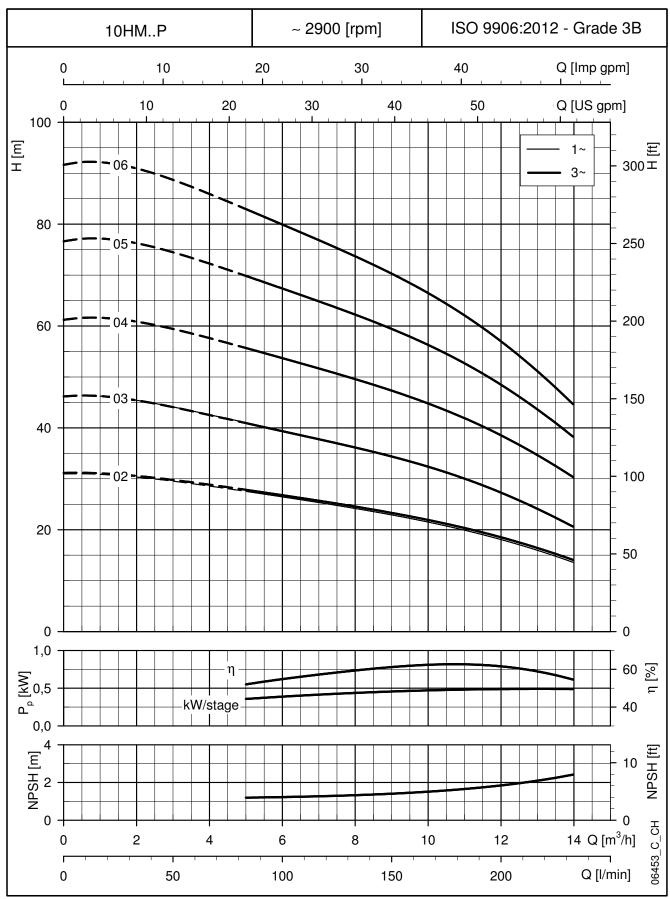
TYPE DE POMPE	VERSION	Réf.	MO ⁻	TEUR		DII	MENSIONS (m	nm)		PN	POIDS
TIPE DE POMPE	VERSION	Rei.	kW	TAILLE	Α	A1	D	н	L	bar	kg
5HM02		Х	0,55	71	89	87,3	140	211	352	10	9
5HM03		^	0,55	71	89	87,3	140	211	352	10	9
5HM04	MONOPHASÉ		0,75	80	109	107,3	155	227	417	10	10
5HM05		Υ	1,1	80	129	127,3	155	227	437	10	11
5HM06			1,1	80	149	147,3	155	227	457	10	14
FUNADO			0.40	63	89	07.2	120	201	220	10	6
5HM02		X	0,40			87,3	120	201	338	10	0
5HM03			0,50	63	89	87,3	120	201	338	10	7
5HM04	TRIPHASÉ		1,1	80	109	107,3	155	219	417	10	13
5HM05		Υ	1,1	80	129	127,3	155	219	437	10	14
5HM06			1,5	80	149	147,3	155	219	457	10	15

5hm-p-2p50-fr_e_td


SÉRIES 5HM..P CARACTÉRISTIQUES DE FONCTIONNEMENT À 50 Hz, 2 PÔLES

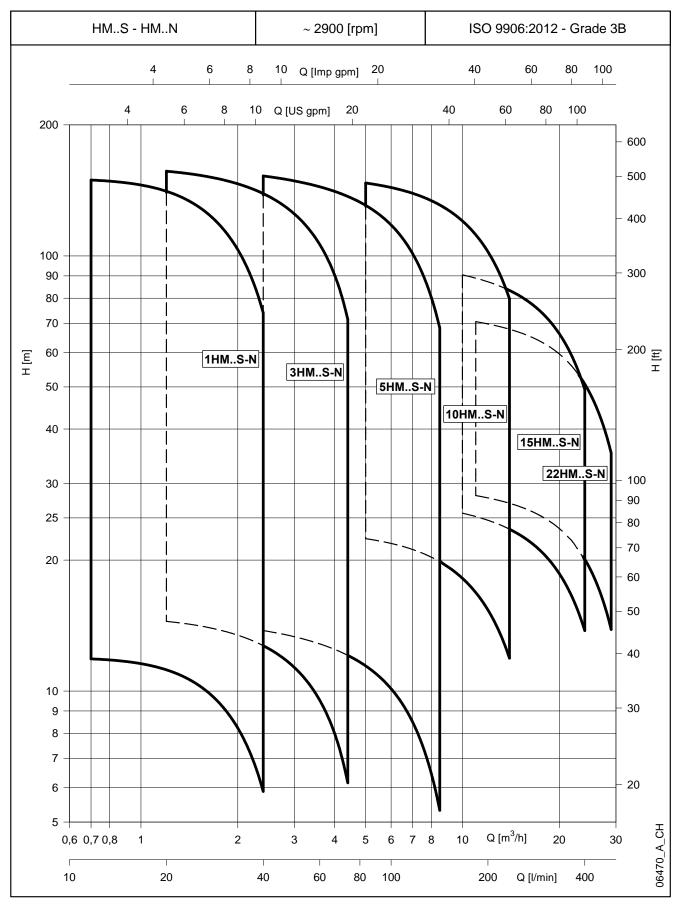
Ces performances sont valables pour les liquides avec une densité $\rho=1$ Kg/dm³ et une viscosité cinématique $\nu=1$ mm²/s.

SÉRIES 10HM..P DIMENSIONS ET POIDS À 50 Hz, 2 PÔLES



-																			
TYPE DE POMPE	VERSION	MO	TEUR						D	IMENSI	ONS (mr	m)						PN	POIDS
	K	kW	TAILLE	Α	A1	D	Н	H1	L	L1	L2	М	M1	N	N1	P	K	bar	kg
10HM02	MONO- PHASÉ	1,1	80	125	137	155	227	90	443	122	105	100	125	125	155	12,5	10	10	16
10HM03	MO PH,	1,5	90	125	137	174	249	90	499	144	128	125	150	140	164	12.5	10	10	40
10HM02		1,1	80	125	137	155	219	90	443	122	105	100	125	125	155	12,5	10	10	16
10HM03	SÉ	1,5	80	125	137	155	219	90	443	122	105	100	125	125	155	12,5	10	10	17
10HM04	TRIPHA	2,2	90	157	169	174	224	90	531	176	128	125	150	140	164	12,5	10	10	23
10HM05	T.	3	90	189	201	174	224	90	563	208	128	125	150	140	164	12,5	10	10	27
10HM06		3	90	221	233	174	224	90	595	240	128	125	150	140	164	12,5	10	10	28

10hm-p-2p50-fr_d_td


SÉRIES 10HM..P CARACTÉRISTIQUES DE FONCTIONNEMENT À 50 Hz, 2 PÔLES

Ces performances sont valables pour les liquides avec une densité $\rho=1$ Kg/dm³ et une viscosité cinématique $\nu=1$ mm²/s.

SÉRIES HM..S - HM..N PLAGE DES PERFORMANCES HYDRAULIQUES À 50 Hz, 2 PÔLES

SÉRIES 1, 3HM..S - HM..N TABLEAU DES PERFORMANCES HYDRAULIQUES À 50 Hz, 2 PÔLES

TYPE DE	_		MOTEUR	Е	LECTROPO	MPE				Q = D	EBIT			
POMPE	/ERSION				*	1	l/min 0	11,7	16,0	21,0	26,0	31,0	36,0	40,0
HMS	/ERS	P_{N}	TYPE	* P ₁	220-240 V	380-415 V	m³/h 0	0,7	1,0	1,3	1,6	1,9	2,2	2,4
HMN	_	kW		kW	Α	Α	н	= HAUT	EUR MAI	NOMÉTR	IQUE TO	TALE EN	MÈTRES	
1HM06		0,55	SM71HM/1055	0,48	2,15	-	36,2	35,8	35,0	33,3	30,5	26,8	22,1	17,7
1HM07		0,55	SM71HM/1055	0,52	2,30	-	42,1	41,5	40,5	38,4	35,2	30,8	25,4	20,2
1HM08		0,55	SM71HM/1055	0,56	2,46	1	47,9	47,1	46,0	43,5	39,8	34,7	28,4	22,5
1HM09		0,55	SM71HM/1055	0,61	2,62	-	53,7	52,6	51,3	48,5	44,3	38,5	31,4	24,7
1HM11		0,55	SM71HM/1055	0,69	2,97	-	65,1	63,5	61,7	58,2	52,8	45,7	36,9	28,7
1HM12	1 ~	0,55	SM71HM/1055	0,73	3,15	-	70,7	68,8	66,8	62,8	56,9	49,0	39,4	30,4
1HM14	~	0,75	SM71HM/1075	0,87	3,87	-	84,0	82,6	80,7	76,5	69,9	61,1	50,1	39,7
1HM16		0,75	SM71HM/1075	0,97	4,27	-	95,6	93,8	91,5	86,5	78,8	68,6	56,0	44,0
1HM18		1,1	SM71HM/1075	1,12	4,92	-	109	107	105	99,2	90,9	79,6	65,5	52,1
1HM20		1,1	SM80HM/1115	1,21	5,32	-	120	118	115	109	100	87,4	71,7	56,9
1HM22		1,1	SM80HM/1115	1,31	5,75	-	132	129	126	119	109	95,0	77,6	61,3
1HM25		1,1	SM80HM/1115	1,45	6,42	-	149	146	143	135	123	107	87,2	68,6
1HM02		0,30	SM63HM/303	0,24	1,89	1,09	12,1	12,0	11,7	11,2	10,3	9,1	7,5	6,0
1HM03		0,30	SM63HM/303	0,28	1,87	1,08	18,0	17,7	17,3	16,4	15,0	13,2	10,8	8,6
1HM04		0,30	SM63HM/303	0,33	1,87	1,08	23,7	23,3	22,7	21,5	19,5	17,0	13,8	10,9
1HM05		0,30	SM63HM/303	0,38	1,89	1,09	29,4	28,7	27,9	26,2	23,8	20,6	16,6	12,8
1HM06		0,30	SM63HM/303	0,42	1,91	1,10	35,0	33,9	32,9	30,8	27,8	23,9	19,1	14,6
1HM07		0,55	SM71HM/305	0,48	2,23	1,29	42,4	41,9	41,1	39,0	35,8	31,5	26,1	20,9
1HM08		0,55	SM71HM/305	0,53	2,29	1,32	48,3	47,7	46,6	44,3	40,6	35,6	29,3	23,4
1HM09	3 ~	0,55	SM71HM/305	0,58	2,36	1,36	54,2	53,3	52,1	49,4	45,2	39,6	32,5	25,8
1HM11	3 ~	0,55	SM71HM/305	0,68	2,49	1,44	65,8	64,5	62,9	59,5	54,2	47,2	38,5	30,3
1HM12		0,55	SM71HM/305	0,73	2,58	1,49	71,6	70,0	68,2	64,4	58,6	50,9	41,4	32,4
1HM14		0,75	SM80HM/307 E3	0,83	2,79	1,61	84,6	83,4	81,5	77,4	70,9	62,1	51,2	40,8
1HM16		0,75	SM80HM/307 E3	0,93	2,98	1,72	96,3	94,6	92,4	87,6	80,1	70,0	57,4	45,5
1HM18		1,1	SM80HM/311 E3	1,05	3,66	2,11	109	108	106	100	92,1	81,0	67,0	53,7
1HM20		1,1	SM80HM/311 E3	1,15	3,85	2,22	121	119	117	111	102	89,2	73,6	58,7
1HM22		1,1	SM80HM/311 E3	1,26	4,06	2,34	133	131	128	121	111	97,2	79,9	63,6
1HM25		1,5	SM80HM/315 E3	1,42	4,87	2,81	151	149	146	139	128	112	92,5	74,0

TYPE DE			MOTEUR	E	LECTROPO	MPE				Q = D	EBIT			
POMPE	/ERSION				*	I	l/min 0	20,0	29,0	38,0	47,0	56,0	65,0	73,3
HMS	ERS	P_N	TYPE	* P ₁	220-240 V	380-415 V	m³/h 0	1,2	1,7	2,3	2,8	3,4	3,9	4,4
HMN	>	kW		kW	Α	Α		= HAUT	EUR MAI	NOMÉTR	IQUE TO	TALE EN	MÈTRES	,
3HM03		0,55	SM71HM/1055	0,46	2,07	-	22,7	22,4	21,5	20,3	18,6	16,4	13,5	10,3
3HM04		0,55	SM71HM/1055	0,53	2,34	-	30,1	29,5	28,3	26,6	24,3	21,3	17,5	13,2
3HM05		0,55	SM71HM/1055	0,61	2,63	-	37,4	36,5	34,9	32,7	29,7	25,9	21,1	15,7
3HM06		0,55	SM71HM/1055	0,69	2,95	-	44,6	43,3	41,3	38,5	34,8	30,2	24,4	17,9
3HM07		0,55	SM71HM/1055	0,76	3,30	-	51,7	49,9	47,5	44,1	39,7	34,2	27,4	19,8
3HM08		0,75	SM71HM./1075	0,90	3,97	-	60,1	58,8	56,4	52,9	48,1	42,1	34,5	25,8
3HM09		0,75	SM71HM/1075	0,98	4,35	-	67,4	65,8	62,9	58,9	53,5	46,6	38,0	28,2
3HM10	1 ~	1,1	SM71HM/1075	1,13	4,95	1	75,5	74,1	71,2	66,8	61,0	53,5	44,1	33,3
3HM11		1,1	SM80HM/1115	1,21	5,32	1	82,8	81,2	77,8	73,0	66,5	58,3	47,8	35,9
3HM12		1,1	SM80HM/1115	1,30	5,70	1	90,2	88,2	84,4	79,1	72,0	62,9	51,4	38,5
3HM13		1,1	SM80HM/1115	1,38	6,11	-	97,4	95,1	91,0	85,1	77,3	67,3	54,9	40,9
3HM14		1,1	SM80HM/1115	1,47	6,53	1	105	102	97,4	90,9	82,4	71,7	58,2	43,0
3HM16		1,5	PLM90HM/1155	1,71	7,77	1	121	119	114	107	97,9	85,9	70,8	53,5
3HM17		1,5	PLM90HM/1155	1,80	8,16	-	128	126	121	113	103	90,7	74,6	56,2
3HM19		1,5	PLM90HM/1155	1,98	8,96	-	143	140	134	126	114	100	81,9	61,4
3HM02		0,3	SM63HM/303	0,31	1,87	1,08	14,9	14,6	14,0	13,1	12,0	10,5	8,6	6,4
3HM03		0,3	SM63HM/303	0,39	1,90	1,10	22,1	21,4	20,3	18,9	17,1	14,8	12,0	8,6
3HM04		0,3	SM63HM/303	0,47	1,95	1,13	29,1	27,8	26,3	24,3	21,7	18,6	14,8	10,2
3HM05		0,4	SM63HM/304	0,55	2,32	1,34	36,8	35,3	33,5	31,0	27,9	24,1	19,2	13,5
3HM06		0,5	SM63HM/305	0,64	2,58	1,49	43,8	41,8	39,5	36,5	32,7	28,1	22,2	15,4
3HM07		0,75	SM80HM/307 E3	0,75	2,65	1,53	53,1	52,3	50,2	47,2	43,3	38,2	31,7	23,9
3HM08		0,75	SM80HM/307 E3	0,84	2,83	1,63	60,5	59,4	57,0	53,5	49,0	43,1	35,6	26,7
3HM09		1,1	SM80HM/311 E3	0,95	3,49	2,02	68,5	67,6	65,0	61,2	56,2	49,7	41,4	31,5
3HM10	3 ~	1,1	SM80HM/311 E3	1,04	3,66	2,11	75,9	74,8	71,9	67,7	62,0	54,8	45,5	34,4
3HM11		1,1	SM80HM/311 E3	1,14	3,83	2,21	83,3	82,0	78,7	74,0	67,8	59,8	49,5	37,3
3HM12		1,1	SM80HM/311 E3	1,23	4,01	2,31	90,7	89,1	85,5	80,3	73,4	64,6	53,4	40,1
3HM13		1,1	SM80HM/311 E3	1,33	4,20	2,42	98,1	96,1	92,2	86,5	79,0	69,5	57,3	42,8
3HM14		1,5	SM80HM/315 E3	1,43	4,89	2,82	106	104	100	94,4	86,5	76,3	63,3	47,8
3HM16		1,5	SM80HM/315 E3	1,61	5,24	3,02	121	119	114	107	97,8	86,1	71,1	53,4
3HM17		1,5	SM80HM/315 E3	1,71	5,43	3,13	128	126	121	113	103	90,9	75,0	56,1
3HM19		2,2	PLM90HM/322 E3	1,94	6,78	3,91	144	142	137	129	118	104	86,7	65,6
3HM21		2,2	PLM90HM/322 E3	2,12	7,15	4,13	159	157	150	141	130	114	94,7	71,5

Performances hydrauliques conformes à la norme ISO 9906:2012 - Classe 3B (ex-ISO 9906:1999 - Annexe A)

1-3hm-s-n-2p50-fr_c_th

^{*} Valeur maximale dans la plage spécifiée $\,:$ P1 = alimentation d'entrée ; l = courant d'entrée.

SÉRIES 5HM..S - HM..N TABLEAU DES PERFORMANCES HYDRAULIQUES À 50 Hz, 2 PÔLES

TYPE DE			MOTEUR	Е	LECTROPO	MPE				Q = D	EBIT			
POMPE	NOI				*	I	l/min 0	40,0	57,0	74,0	91,0	108	125	142
HMS	VERSION	P_N	TYPE	* P ₁	220-240 V	380-415 V	m³/h 0	2,4	3,4	4,4	5,5	6,5	7,5	8,5
HMN	^	kW		kW	Α	Α	Н	= HAUT	EUR MAI	NOMÉTR	QUE TO	TALE EN	MÈTRES	
5HM02		0,55	SM71HM/1055	0,47	2,12	-	15,1	14,7	14,1	13,3	12,2	10,8	9,0	6,7
5HM03		0,55	SM71HM/1055	0,59	2,57	-	22,5	21,7	20,6	19,4	17,7	15,6	12,8	9,4
5HM04		0,55	SM71HM/1055	0,72	3,07	-	29,8	28,4	26,9	25,1	22,8	19,9	16,1	11,6
5HM05		0,75	SM80HM/1075	0,89	3,97	-	37,6	36,3	34,6	32,5	29,9	26,3	21,6	16,0
5HM06		0,75	SM80HM/1075	1,03	4,60	-	45,0	43,1	41,0	38,4	35,1	30,7	25,1	18,3
5HM07	1 ~	1,1	SM80HM/1115	1,23	5,38	-	52,8	50,9	48,6	45,7	41,9	37,0	30,4	22,5
5HM08		1,1	SM80HM/1115	1,36	6,01	1	60,2	57,8	55,0	51,6	47,3	41,5	34,0	25,0
5HM09		1,1	SM80HM/1115	1,50	6,68	-	67,5	64,6	61,3	57,4	52,4	45,8	37,3	27,2
5HM10		1,5	PLM90HM/1155	1,71	7,75	-	75,6	73,3	70,0	66,0	60,7	53,6	44,4	33,1
5HM11		1,5	PLM90HM/1155	1,85	8,37	-	83,0	80,3	76,6	72,1	66,2	58,4	48,1	35,7
5HM12		1,5	PLM90HM/1155	1,99	9,02	1	90,4	87,2	83,1	78,1	71,6	63,0	51,8	38,3
5HM02		0,30	SM63HM/303	0,41	1,91	1,10	14,8	13,9	13,2	12,2	11,1	9,6	7,8	5,5
5HM03		0,40	SM63HM/304	0,54	2,30	1,33	22,2	20,9	19,7	18,3	16,5	14,3	11,5	8,2
5HM04		0,50	SM63HM/305	0,68	2,62	1,51	29,3	27,2	25,6	23,5	21,1	18,1	14,4	9,8
5HM05		0,75	SM80HM/307 E3	0,85	2,83	1,64	37,8	36,5	34,8	32,7	30,0	26,5	22,0	16,4
5HM06		1,1	SM80HM/311 E3	1,02	3,60	2,08	45,5	44,2	42,3	39,8	36,6	32,5	27,1	20,4
5HM07		1,1	SM80HM/311 E3	1,17	3,88	2,24	53,0	51,2	48,9	46,0	42,3	37,4	31,0	23,2
5HM08		1,1	SM80HM/311 E3	1,32	4,18	2,41	60,4	58,2	55,5	52,1	47,7	42,1	34,9	25,9
5HM09		1,5	SM80HM/315 E3	1,48	4,97	2,87	68,1	65,9	63,0	59,2	54,4	48,2	40,1	30,0
5HM10	3 ~	1,5	SM80HM/315 E3	1,63	5,26	3,04	75,5	72,9	69,6	65,4	60,0	52,9	43,9	32,7
5HM11		1,5	SM80HM/315 E3	1,78	5,55	3,21	83,0	79,9	76,1	71,4	65,4	57,6	47,7	35,4
5HM12		2,2	PLM90HM/322 E3	1,97	6,83	3,94	91,0	88,3	84,4	79,5	73,1	64,7	54,0	40,6
5HM13		2,2	PLM90HM/322 E3	2,12	7,13	4,12	98,4	95,3	91,1	85,7	78,8	69,7	58,0	43,5
5HM14		2,2	PLM90HM/322 E3	2,27	7,42	4,28	106	102	97,8	91,9	84,3	74,5	61,9	46,2
5HM15		2,2	PLM90HM/322 E3	2,42	7,73	4,46	113	109	104	97,9	89,8	79,2	65,7	48,9
5HM17		3	PLM90HM/330 E3	2,77	9,77	5,64	129	125	119	112	103	91,2	75,9	56,9
5HM19		3	PLM90HM/330 E3	3,06	10,3	5,97	144	139	132	124	114	101	83,7	62,5
5HM21		3	PLM90HM/330 E3	3,36	10,9	6,31	159	153	146	137	125	110	91,3	67,8

Performances hydrauliques conformes à la norme ISO 9906:2012 - Classe 3B (ex-ISO 9906:1999 - Annexe A)

5hm-s-n-2p50-fr_c_th

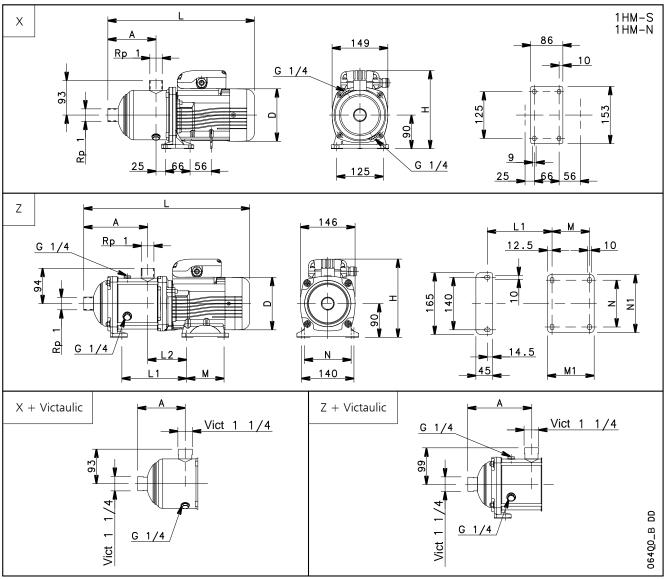
^{*} Valeur maximale dans la plage spécifiée $\,:$ P1 = alimentation d'entrée ; l = courant d'entrée.

SÉRIES 10, 15, 22HM..S - HM..N TABLEAU DES PERFORMANCES HYDRAULIQUES À 50 Hz, 2 PÔLES

TYPE DE	_		MOTEUR		ELECTE	ROPOMPE		Q = DEBIT									
POMPE	ő			* 1		* I		l/min 0	83,3	108	133	158	183	208	233		
HMS	VERSION	$\mathbf{P}_{\mathbf{N}}$	TYPE	* P ₁	220-240 V	380-415 V	660-690 V	m³/h 0	5,0	6,5	8,0	9,5	11,0	12,5	14,0		
HMN		kW		kW	Α	Α	Α	H =	HAUTE	UR MAN	IOMÉTR	IQUE TO	TALE EN	TALE EN MÈTRES			
10HM02		1,1	SM80HM/1115	1,00	4,41	ı	-	23,6	22,1	21,0	19,6	17,9	15,8	13,1	10,1		
10HM03	1 ~	1,1	SM80HM/1115	1,34	5,92	-	-	36,0	33,2	31,8	30,0	27,6	24,7	21,3	17,3		
10HM04		1,5	PLM90HM/1155	1,78	8,04	ı	-	48,3	44,9	43,1	40,7	37,7	33,8	29,3	24,0		
10HM02		0,75	SM80HM/307 E3	0,90	2,91	1,68	-	23,6	21,8	20,7	19,3	17,6	15,4	12,8	9,8		
10HM03		1,1	SM80HM/311 E3	1,30	4,15	2,40	-	36,2	33,6	32,3	30,5	28,2	25,3	21,9	17,9		
10HM04		1,5	SM80HM/315 E3	1,70	5,40	3,12	-	48,3	44,8	43,0	40,6	37,5	33,7	29,2	23,9		
10HM05		2,2	PLM90HM/322 E3	2,14	7,17	4,14	-	60,6	56,4	54,3	51,4	47,6	42,8	37,1	30,5		
10HM06			2,2	PLM90HM/322 E3	2,52	7,96	4,59	-	72,4	67,1	64,4	60,8	56,2	50,5	43,6	35,6	
10HM07	3 ~	3	PLM90HM/330 E3	2,96	10,2	5,87	-	84,8	78,8	75,8	71,7	66,3	59,7	51,7	42,4		
10HM08	٠.٠	3	PLM90HM/330 E3	3,35	10,9	6,32	-	96,6	89,4	85,9	81,1	74,9	67,3	58,1	47,5		
10HM09		4	PLM100HM/340 E3	3,75	-	6,74	3,89	109	102	98,3	93,1	86,3	77,9	67,7	55,7		
10HM10		4	PLM100HM/340 E3	4,14	-	7,20	4,16	121	113	109	103	95,2	85,7	74,4	61,1		
10HM11		4	PLM100HM/340 E3	4,52	-	7,70	4,45	133	124	119	112	104	93,5	81,0	66,4		
10HM12		5,5	PLM112HM/355 E3	5,04	-	9,39	5,43	146	136	131	124	115	104	90,4	74,5		
10HM13		5,5	PLM112HM/355 E3	5,42	-	9,82	5,68	158	147	142	134	124	112	97,3	80,0		

TYPE DE	_		MOTEUR		ELECTE	ROPOMPE		Q = DEBIT									
POMPE	SION				* 1			l/min 0	133	178	223	268	313	358	400		
HMS	VER	\mathbf{P}_{N}	TYPE	* P ₁	220-240 V	380-415 V	660-690 V	m³/h 0	8,0	10,7	13,4	16,1	18,8	21,5	24,0		
HMN		kW		kW	Α	Α	Α	H =	HAUTE	UR MAN	IOMÉTR	QUE TO	TALE EN	N MÈTRES			
15HM02	1 ~	1,5	PLM90HM/1155	1,72	7,79	-	-	28,8	26,4	25,2	23,8	21,9	19,2	15,8	11,8		
15HM02		1,5	SM80HM/315 E3	1,63	5,29	3,05	-	28,8	26,3	25,2	23,8	21,8	19,2	15,7	11,7		
15HM03	ন ∼			2,2	PLM90HM/322 E3	2,57	8,05	4,65	-	43,6	39,6	37,9	35,8	33,1	29,7	25,4	20,6
15HM04		3	PLM90HM/330 E3	3,40	11,06	6,39	-	58,1	52,8	50,6	47,7	44,2	39,6	33,8	27,4		
15HM05	٠.٠	4	PLM100HM/340 E3	4,21	-	7,30	4,22	72,9	66,7	63,9	60,5	56,1	50,5	43,3	35,3		
15HM06		5,5	PLM112HM/355 E3	5,13	-	9,50	5,49	87,8	80,4	77,2	73,2	67,9	61,2	52,7	43,1		
15HM07		5,5	PLM112HM/355 E3	5,91	-	10,38	6,00	102	93,3	89,4	84,6	78,4	70,5	60,6	49,4		

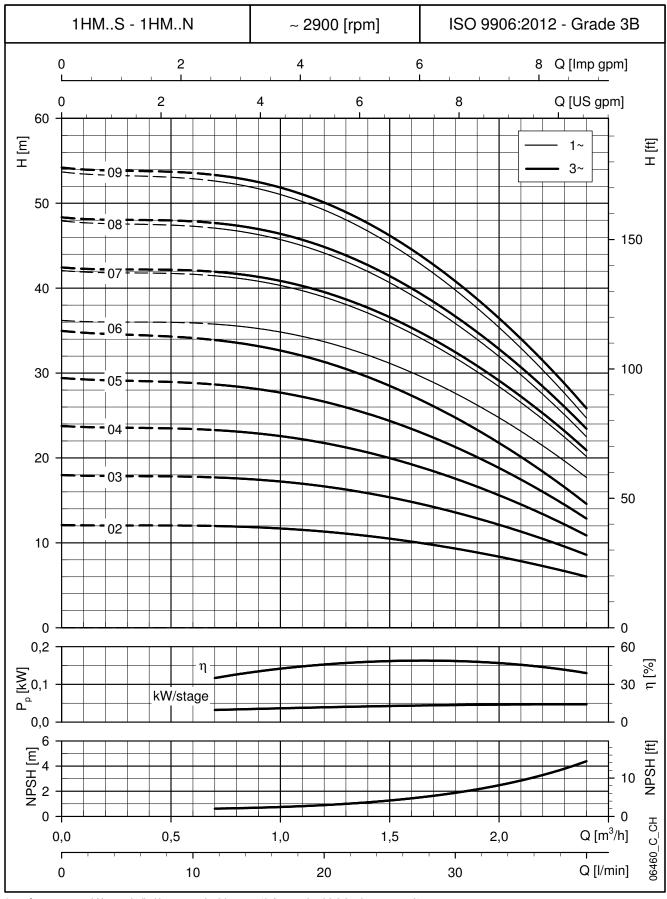
TYPE DE NO			MOTEUR		ELECTE	ROPOMPE		Q = DEBIT								
						* I		l/min 0	183	233	283	333	383	433	483	
HMS	/ERS	\mathbf{P}_{N}	TYPE		220-240 V	380-415 V	660-690 V	m³/h 0	11,0	14,0	17,0	20,0	23,0	26,0	29,0	
HMN	١	kW										MÈTRES				
22HM02		2,2	PLM90HM/322 E3	2,37	7,64	4,41	-	30,2	28,0	26,7	25,0	22,7	19,5	15,4	10,4	
22HM03	3 ~	3	PLM90HM/330 E3	3,38	10,99	6,34	-	45,6	41,9	40,2	38,0	35,1	31,3	26,4	20,4	
22HM04	~ ر	4	PLM100HM/340 E3	4,44	-	7,56	4,37	61,0	56,3	54,0	51,1	47,3	42,3	35,8	27,9	
22HM05		5,5	PLM112HM/355 E3	5,62	-	10,0	5,79	76,4	70,7	67,9	64,3	59,6	53,3	45,2	35,3	


Performances hydrauliques conformes à la norme ISO 9906:2012 - Classe 3B (ex-ISO 9906:1999 - Annexe A)

10-22hm-s-n-2p50-fr_c_th

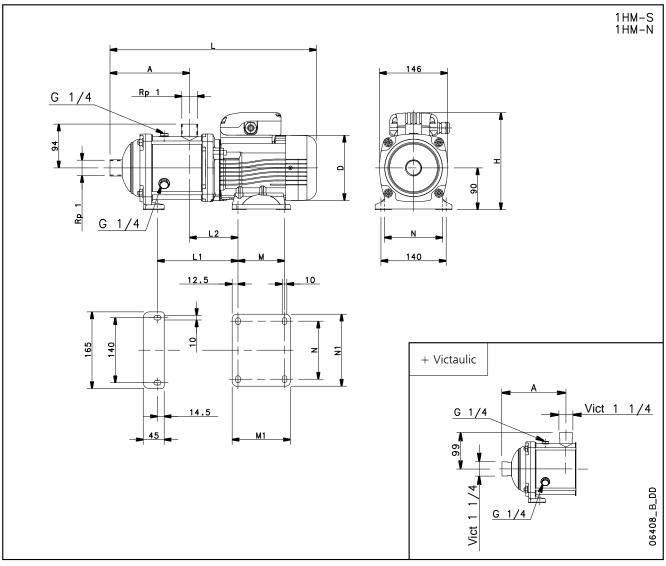
^{*} Valeur maximale dans la plage spécifiée : P1 = alimentation d'entrée ; l = courant d'entrée.

SÉRIES 1HM..S - 1HM..N (DE 2 À 9 ÉTAGES) DIMENSIONS ET POIDS À 50 Hz, 2 PÔLES


>									90							
TYPE DE	VERSION	Réf.	МО	TEUR			PN	POIDS								
POMPE	VER	Ř	kW	TAILLE	Α	D	н	L	L1	L2	М	M1	N	N1	bar	kg
1HM06		Х	0,55	71	147	140	211	404	-	-	-	-	-	-	10	10
1HM07	٩SÉ		0,55	71	151	140	211	424	153	104	100	125	125	155	10	10
1HM08	PHASI	Z	0,55	71	171	140	211	444	173	104	100	125	125	155	10	11
1HM09	8		0,55	71	191	140	211	464	193	104	100	125	125	155	10	11
	MONO															
4111402	1		0.20	62	0.7	420	201	226							10	
1HM02			0,30	63	87	120	201	336	-	-	-	-	-	-	10	6
1HM03			0,30	63	87	120	201	336	-	-	-	-	-	-	10	6
1HM04	, m	Х	0,30	63	107	120	201	356	-	-	-	-	-	-	10	7
1HM05	¥		0,30	63	127	120	201	376	-	-	-	-	-	-	10	7
1HM06	TRIPHASÉ		0,30	63	147	120	201	396	-	-	-	-	-	-	10	7
1HM07	_		0,55	71	151	140	211	424	153	104	100	125	125	155	10	10
1HM08		Z	0,55	71	171	140	211	444	173	104	100	125	125	155	10	11
1HM09			0,55	71	191	140	211	464	193	104	100	125	125	155	10	11

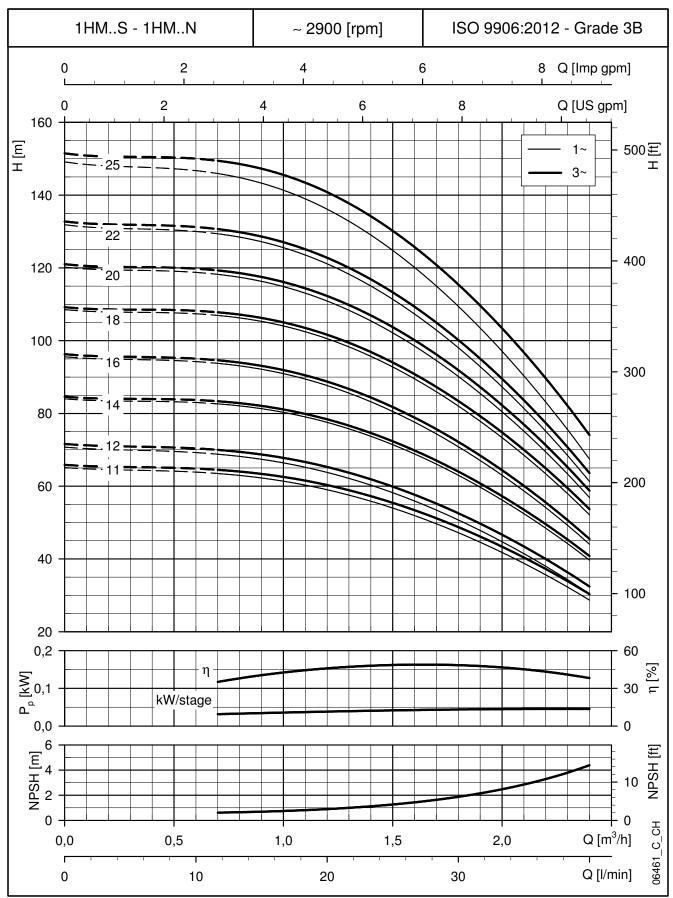
Il est possible d'utiliser les pompes jusqu'à PN16 en montant une garniture mécanique PN16. Pour la garniture mécanique, voir le tableau TYPE DE JOINT à la page 15.

1hm-s-n-2p50-1-fr_c_td



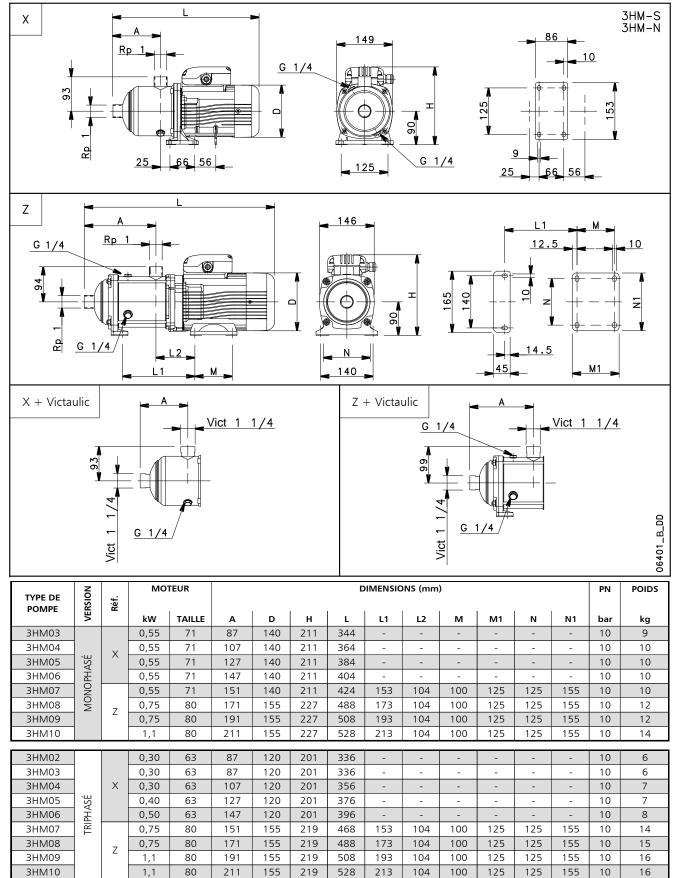
SÉRIES 1HM..S - 1HM..N (DE 2 À 9 ÉTAGES) CARACTÉRISTIQUES DE FONCTIONNEMENT À 50 Hz, 2 PÔLES

SÉRIES 1HM..S - 1HM..N (DE 11 À 25 ÉTAGES) DIMENSIONS ET POIDS À 50 Hz, 2 PÔLES


TYPE DE	VERSION	MO	TEUR		DIMENSIONS (mm)											
POMPE	VER	kW	TAILLE	Α	D	н	L	L1	L2	М	M1	N	N1	bar	kg	
1HM11		0,55	71	231	140	211	504	233	104	100	125	125	155	10	12	
1HM12		0,55	71	251	140	211	524	253	104	100	125	125	155	10	12	
1HM14	PHASÉ	0,75	80	291	155	227	608	293	104	100	125	125	155	10	14	
1HM16	Ŧ	0,75	80	331	155	227	648	333	104	100	125	125	155	10	14	
1HM18	MONOR	1,1	80	371	155	227	688	373	104	100	125	125	155	16	17	
1HM20	8	1,1	80	411	155	227	728	413	104	100	125	125	155	16	19	
1HM22		1,1	80	451	155	227	768	453	104	100	125	125	155	16	19	
1HM25		1,1	80	511	155	227	828	513	104	100	125	125	155	16	21	
	1															
1HM11		0,55	71	231	140	211	504	233	104	100	125	125	155	10	12	
1HM12		0,55	71	251	140	211	524	253	104	100	125	125	155	10	12	
1HM14	SÉ	0,75	80	291	155	219	608	293	104	100	125	125	155	10	14	
1HM16	₽	0,75	80	331	155	219	648	333	104	100	125	125	155	10	14	
1HM18	TRIPHAS	1,1	80	371	155	219	688	373	104	100	125	125	155	16	19	
1HM20	<u> </u>	1,1	80	411	155	219	728	413	104	100	125	125	155	16	20	
1HM22		1,1	80	451	155	219	768	453	104	100	125	125	155	16	20	
1HM25		1,5	80	511	155	219	828	513	104	100	125	125	155	16	23	

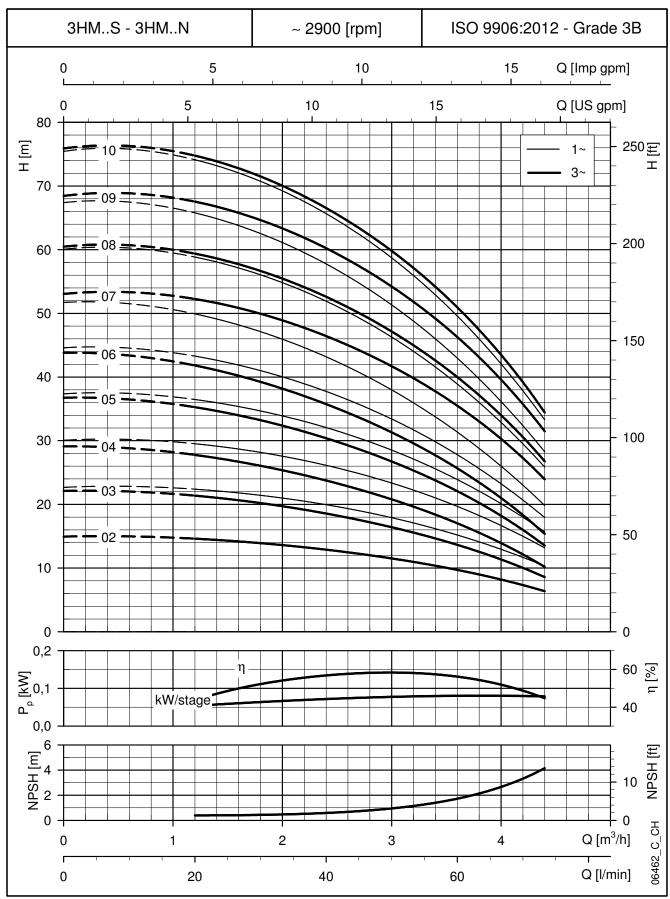
Il est possible d'utiliser les pompes jusqu'à PN16 en montant une garniture mécanique PN16. Pour la garniture mécanique, voir le tableau TYPE DE JOINT à la page 15.

1hm-s-n-2p50-2-fr_c_td



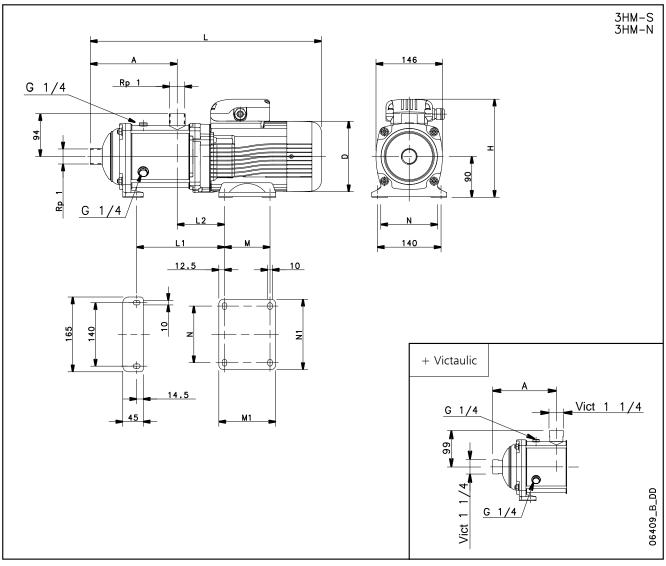
SÉRIES 1HM..S - 1HM..N (DE 11 À 25 ÉTAGES) CARACTÉRISTIQUES DE FONCTIONNEMENT À 50 Hz, 2 PÔLES

SÉRIES 3HM..S - 3HM..N (DE 2 À 10 ÉTAGES) DIMENSIONS ET POIDS À 50 Hz, 2 PÔLES



Il est possible d'utiliser les pompes jusqu'à PN16 en montant une garniture mécanique PN16. Pour la garniture mécanique, voir le tableau TYPE DE JOINT à la page 15.

 $3hm\text{-}s\text{-}n\text{-}2p50\text{-}1\text{-}fr_c_td$



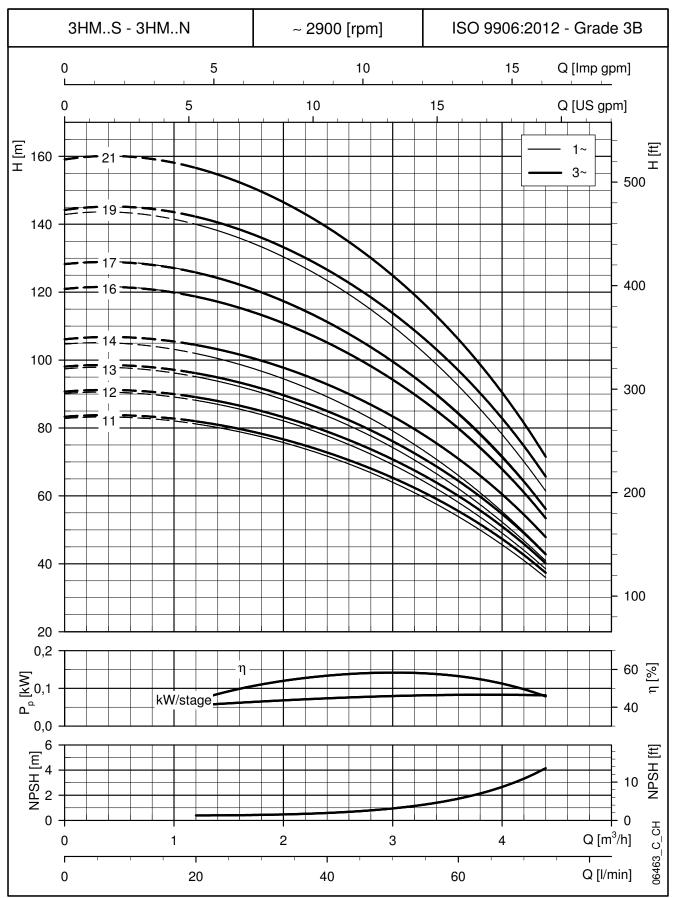
SÉRIES 3HM..S - 3HM..N (DE 2 À 10 ÉTAGES) CARACTÉRISTIQUES DE FONCTIONNEMENT À 50 Hz, 2 PÔLES

SÉRIES 3HM..S - 3HM..N (DE 11 À 21 ÉTAGES) DIMENSIONS ET POIDS À 50 Hz, 2 PÔLES

TYPE DE	VERSION	MO	TEUR					DIMENSI	ONS (mm)				PN	POIDS
POMPE	VER	kW	TAILLE	Α	D	н	L	L1	L2	м	M1	N	N1	bar	kg
3HM11		1,1	80	231	155	227	548	233	104	100	125	125	155	10	16
3HM12		1,1	80	251	155	227	568	253	104	100	125	125	155	10	16
3HM13	٩SÉ	1,1	80	271	155	227	588	273	104	100	125	125	155	10	17
3HM14	PH/	1,1	80	291	155	227	608	293	104	100	125	125	155	16	18
3HM16	MONOPHASÉ	1,5	90	331	174	249	648	376	127	125	150	140	164	16	31
3HM17	Θ W	1,5	90	351	174	249	668	396	127	125	150	140	164	16	32
3HM19		1,5	90	391	174	249	708	416	127	125	150	140	164	16	32
3HM11		1,1	80	231	155	219	548	233	104	100	125	125	155	10	17
3HM12		1,1	80	251	155	219	568	253	104	100	125	125	155	10	17
3HM13	بب	1,1	80	271	155	219	588	273	104	100	125	125	155	10	17
3HM14	HAS	1,5	80	291	155	219	608	293	104	100	125	125	155	16	19
3HM16	RIPHASÉ	1,5	80	331	155	219	648	333	104	100	125	125	155	16	19
3HM17	F	1,5	80	351	155	219	668	353	104	100	125	125	155	16	20
3HM19		2,2	90	391	174	224	764	416	127	125	150	140	164	16	25

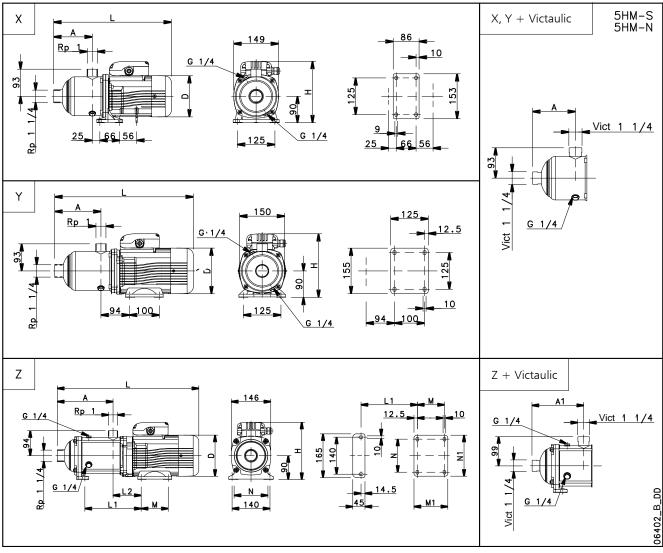
Il est possible d'utiliser les pompes jusqu'à PN16 en montant une garniture mécanique PN16. Pour la garniture mécanique, voir le tableau TYPE DE JOINT à la page 15.

224


3hm-s-n-2p50-2-fr_c_td

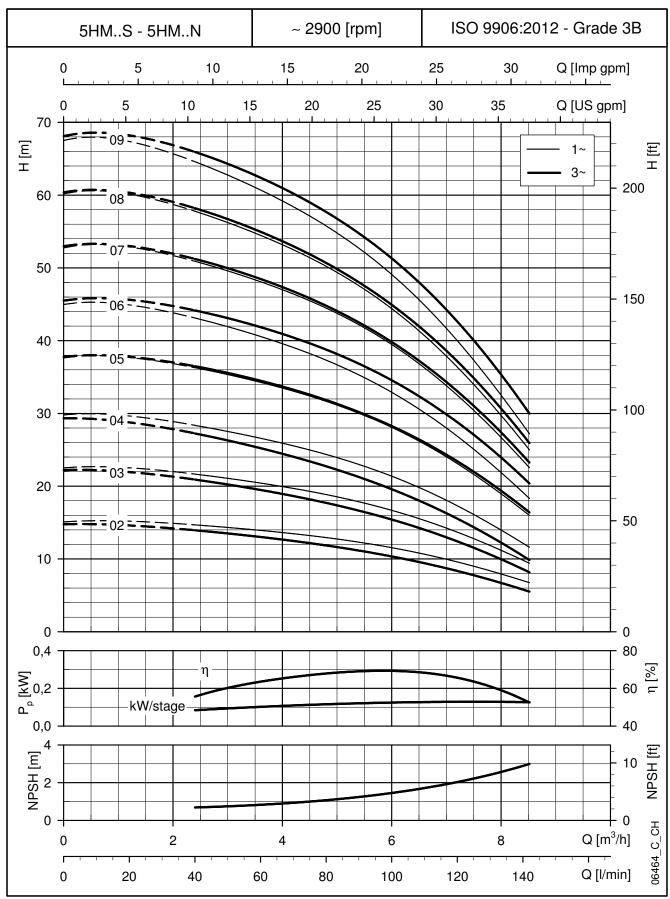
26

804



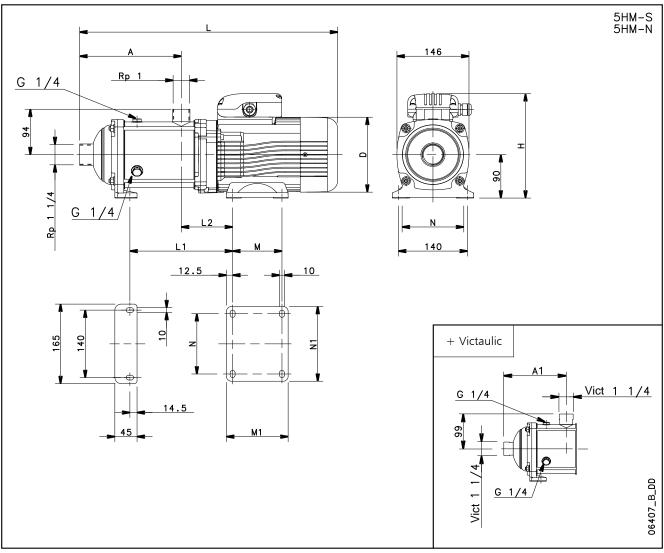
SÉRIES 3HM..S - 3HM..N (DE 11 À 21 ÉTAGES) CARACTÉRISTIQUES DE FONCTIONNEMENT À 50 Hz, 2 PÔLES

SÉRIES 5HM..S - 5HM..N (DE 2 À 9 ÉTAGES) DIMENSIONS ET POIDS À 50 Hz, 2 PÔLES


											, ,					l	
TYPE DE POMPE	VERSION	Réf.	МО	TEUR					DIME	NSIONS ((mm)					PN	POIDS
	K		kW	TAILLE	Α	A1	D	н	L	L1	L2	М	M1	N	N1	bar	kg
5HM02			0,55	71	104	102	140	211	361	-	-	-	-	-	-	10	9
5HM03		X	0,55	71	104	102	140	211	361	-	-	-	-	-	-	10	9
5HM04	۱SÉ	_ ^	0,55	71	129	127	140	211	386	-	-	-	-	-	-	10	10
5HM05	PH		0,75	80	154	152	155	227	461	-	-	-	-	-	-	10	10
5HM06	MONOPHASÉ		0,75	80	158	156	155	227	474	158	104	100	125	125	155	10	11
5HM07	Θ	Z	1,1	80	183	181	155	227	499	183	104	100	125	125	155	10	15
5HM08		4	1,1	80	208	206	155	227	524	208	104	100	125	125	155	10	15
5HM09			1,1	80	233	231	155	227	550	233	104	100	125	125	155	10	17
		1															
5HM02			0,30	63	104	102	120	201	353	-	-	-	-	-	-	10	6
5HM03		Χ	0,40	63	104	102	120	201	353	-	-	-	-	-	-	10	7
5HM04	·Ш		0,50	63	129	127	120	201	378	-	-	-	-	-	-	10	8
5HM05	HAS	Υ	0,75	80	154	152	155	219	462	-	-	-	-	-	-	10	13
5HM06	RIPHASÉ		1,1	80	158	156	155	219	475	158	104	100	125	125	155	10	15
5HM07	-	Z	1,1	80	183	181	155	219	500	183	104	100	125	125	155	10	16
5HM08			1,1	80	208	206	155	219	525	208	104	100	125	125	155	10	16
5HM09	I		1.5	80	233	231	155	219	550	233	104	100	125	125	155	10	18

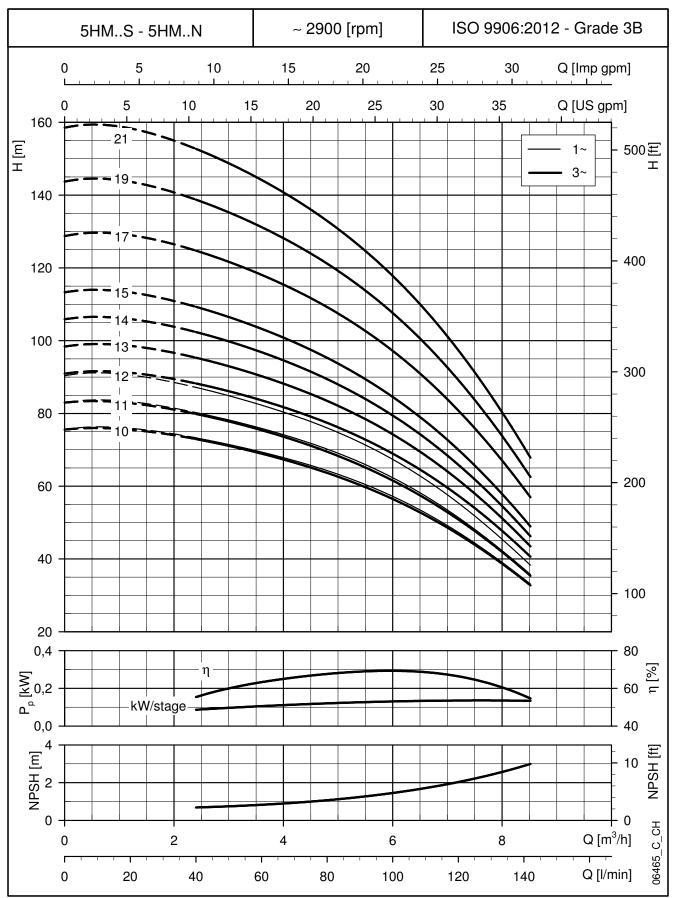
Il est possible d'utiliser les pompes jusqu'à PN16 en montant une garniture mécanique PN16. Pour la garniture mécanique, voir le tableau TYPE DE JOINT à la page 15.

5hm-s-n-2p50-1-fr_e_td



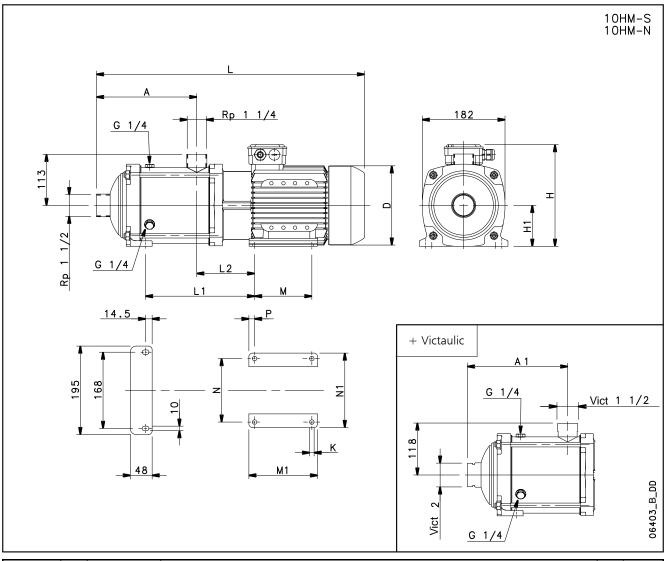
SÉRIES 5HM..S - 5HM..N (DE 2 À 9 ÉTAGES) CARACTÉRISTIQUES DE FONCTIONNEMENT À 50 Hz, 2 PÔLES

SÉRIES 5HM..S - 5HM..N (DE 10 À 21 ÉTAGES) DIMENSIONS ET POIDS À 50 Hz, 2 PÔLES


TYPE DE	N O	МО	TEUR					DIME	NSIONS	(mm)					PN	POIDS
POMPE	VERSION	kW	TAILLE	Α	A1	D	н	L	L1	L2	М	M1	N	N1	bar	kg
5HM10	۱SÉ	1,5	90	258	256	174	249	631	281	127	125	150	140	164	10	30
5HM11	PHA	1,5	90	283	281	174	249	656	306	127	125	150	140	164	10	30
5HM12	MONO	1,5	90	308	306	174	249	681	331	127	125	150	140	164	10	31
	MC															
5HM10		1,5	80	258	256	155	227	575	258	104	100	125	125	155	10	18
5HM11		1,5	80	283	281	155	227	600	283	104	100	125	125	155	10	19
5HM12		2,2	90	308	306	174	224	681	308	127	125	150	140	164	10	24
5HM13	۱SÉ	2,2	90	333	331	174	224	706	356	127	125	150	140	164	10	24
5HM14	PHA	2,2	90	358	356	174	224	731	381	127	125	150	140	164	16	25
5HM15	TRIPH,	2,2	90	383	381	174	224	756	406	127	125	150	140	164	16	25
5HM17		3	90	433	431	174	224	806	456	127	125	150	140	164	16	29
5HM19		3	90	483	481	174	224	856	506	127	125	150	140	164	16	30
5HM21	1	3	90	533	531	174	224	906	556	127	125	150	140	164	16	31

Il est possible d'utiliser les pompes jusqu'à PN16 en montant une garniture mécanique PN16. Pour la garniture mécanique, voir le tableau TYPE DE JOINT à la page 15.

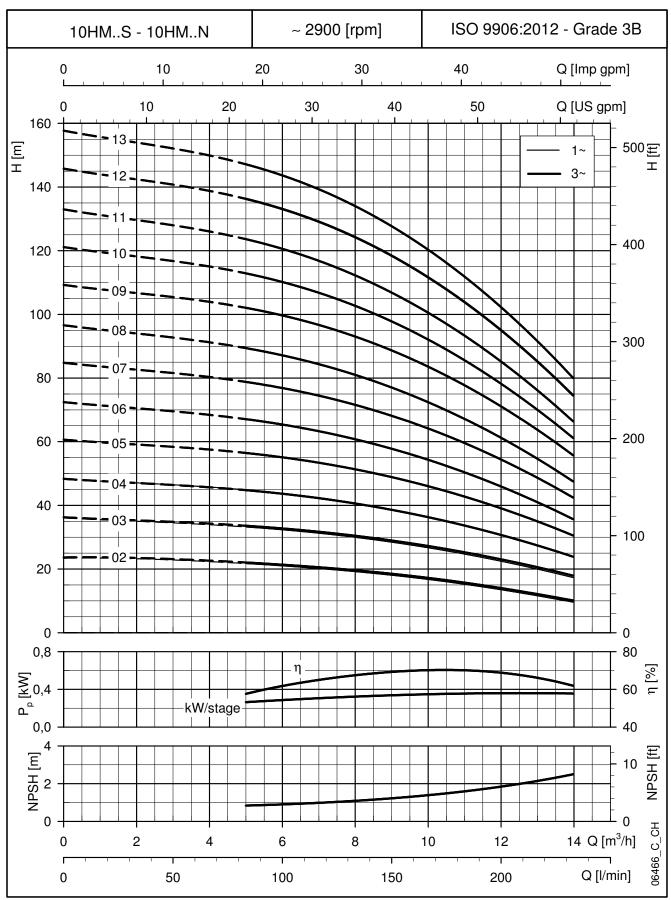
5hm-s-n-2p50-2-fr_d_td



SÉRIES 5HM..S - 5HM..N (DE 10 À 21 ÉTAGES) CARACTÉRISTIQUES DE FONCTIONNEMENT À 50 Hz, 2 PÔLES

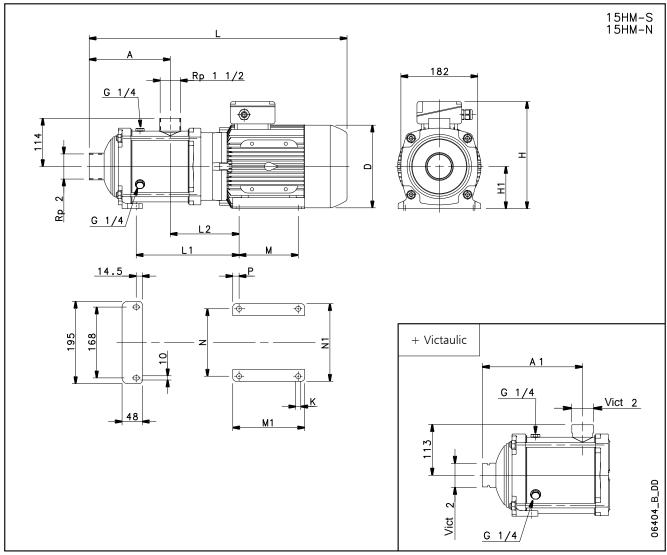
SÉRIES 10HM..S - 10HM..N DIMENSIONS ET POIDS À 50 Hz, 2 PÔLES

TYPE DE POMPE	VERSION	МО	TEUR						DI	MENSIC	ONS (mı	m)						PN	POIDS
POWIPE	VEF	kW	TAILLE	А	A1	D	н	Н1	L	L1	L2	М	M1	N	N1	Р	κ	bar	kg
10HM02	·ш	1,1	80	125	137	155	227	90	443	122	105	100	125	125	155	12,5	10	10	13
10HM03	HASÉ	1,1	80	125	137	155	227	90	443	122	105	100	125	125	155	12,5	10	10	17
10HM04	OPI	1,5	90	157	169	174	249	90	531	176	128	125	150	140	164	12,5	10	10	31
	MONOP																		
	2																		
		•						,											
10HM02		0,75	80	125	137	155	219	90	443	122	105	100	125	125	155	12,5	10	10	16


10HM02		0,75	80	125	137	155	219	90	443	122	105	100	125	125	155	12,5	10	10	16
10HM03		1,1	80	125	137	155	219	90	443	122	105	100	125	125	155	12,5	10	10	17
10HM04		1,5	80	157	169	155	219	90	475	154	105	100	125	125	155	12,5	10	10	19
10HM05		2,2	90	189	201	174	224	90	563	208	128	125	150	140	164	12,5	10	10	25
10HM06	·Ш	2,2	90	221	233	174	224	90	595	240	128	125	150	140	164	12,5	10	10	26
10HM07	HAS	3	90	253	265	174	224	90	627	272	128	125	150	140	164	12,5	10	10	30
10HM08	TRIP	3	90	285	297	174	224	90	659	304	128	125	150	140	164	12,5	10	10	31
10HM09	-	4	100	317	329	197	254	100	720	356	147	140	170	160	184	15	12	16	38
10HM10		4	100	349	361	197	254	100	752	388	147	140	170	160	184	15	12	16	39
10HM11		4	100	381	393	197	254	100	784	420	147	140	170	160	184	15	12	16	40
10HM12		5,5	112	413	425	214	280	112	850	459	154	140	170	190	219	15	12	16	48
10HM13		5,5	112	445	457	214	280	112	882	491	154	140	170	190	219	15	12	16	49

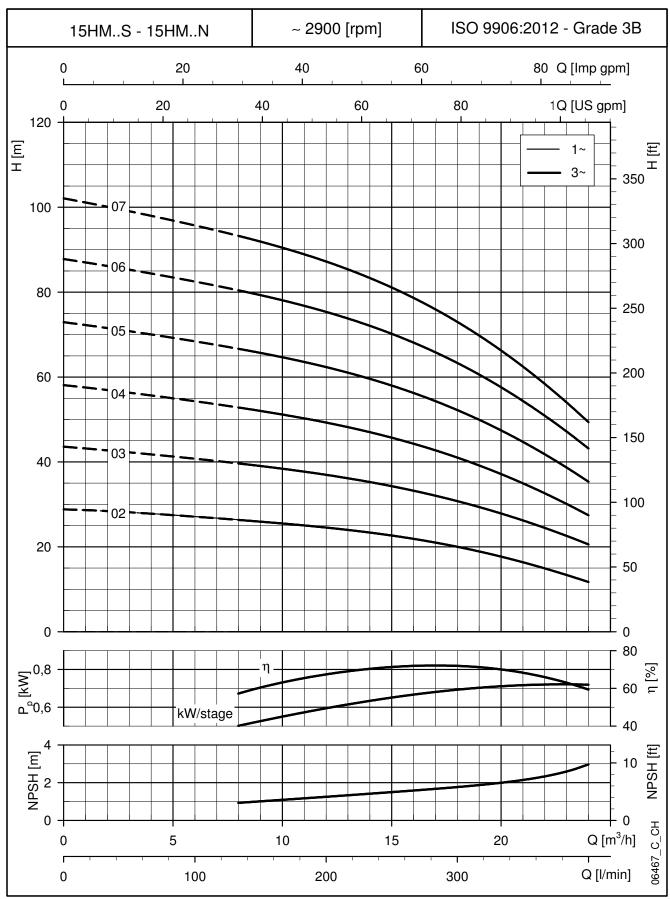
Il est possible d'utiliser les pompes jusqu'à PN16 en montant une garniture mécanique PN16. Pour la garniture mécanique, voir le tableau TYPE DE JOINT à la page 15.

10hm-s-n-2p50-fr_d_td



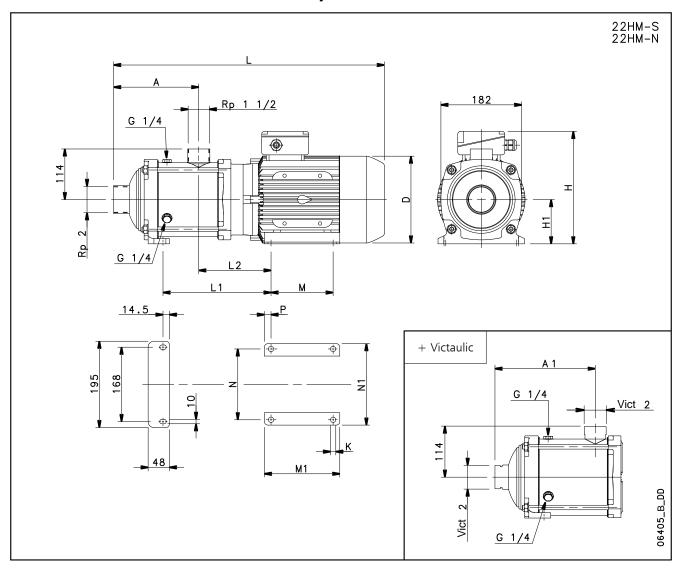
SÉRIES 10HM..S - 10HM..N CARACTÉRISTIQUES DE FONCTIONNEMENT À 50 Hz, 2 PÔLES

SÉRIES 15HM..S - 15HM..N DIMENSIONS ET POIDS À 50 Hz, 2 PÔLES


TYPE DE	VERSION	MO	TEUR						D	IMENSI	ONS (mr	n)						PN	POIDS
POMPE	VER	kW	TAILLE	Α	A1	D	н	Н1	L	L1	L2	М	M1	N	N1	Р	K	PN	kg
15HM02	MONO- PHASÉ	1,5	90	144	153	174	249	90	534	128	144	125	150	140	164	12,5	10	10	30
	MO PH,																		
15HM02		1,5	80	144	153	155	219	90	478	154	121	100	125	125	155	12,5	10	10	18
15HM03		2,2	90	144	153	174	224	90	534	176	144	125	150	140	164	12,5	10	10	23
15HM04		3	90	192	201	174	224	90	582	224	144	125	150	140	164	12,5	10	10	27
15HM05	SÉ	4	100	240	249	197	254	100	659	292	163	140	170	160	184	15	12	10	35
15HM06	PHASÉ	5,5	112	288	297	214	280	112	741	347	170	140	170	190	219	15	12	10	43
15HM07	TRII	5,5	112	336	345	214	280	112	789	395	170	140	170	190	219	15	12	10	44
														·					

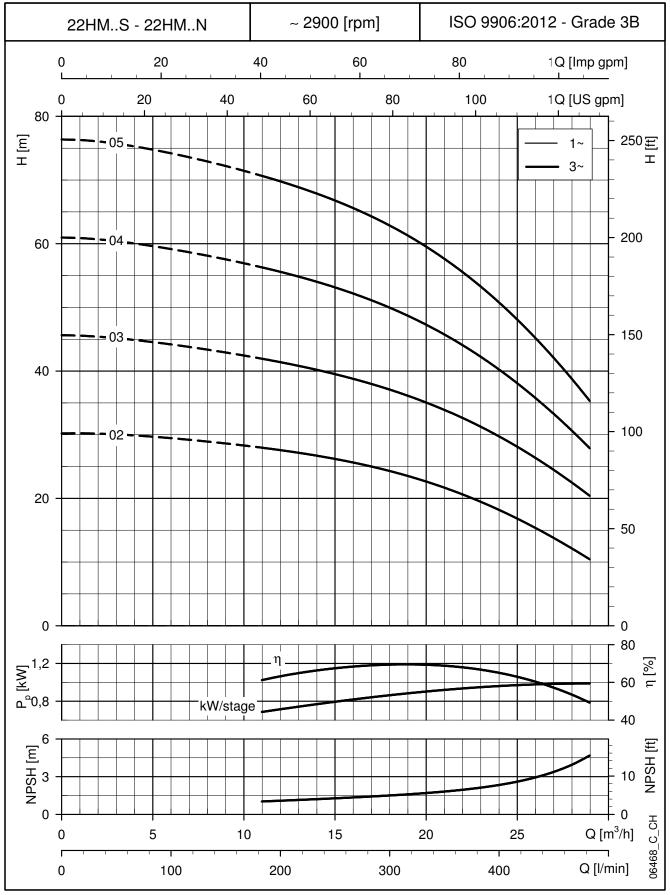
Il est possible d'utiliser les pompes jusqu'à PN16 en montant une garniture mécanique PN16. Pour la garniture mécanique, voir le tableau TYPE DE JOINT à la page 15.

15hm-s-n-2p50-fr d td



SÉRIES 15HM..S - 15HM..N CARACTÉRISTIQUES DE FONCTIONNEMENT À 50 Hz, 2 PÔLES

SÉRIES 22HM..S - 22HM..N DIMENSIONS ET POIDS À 50 Hz, 2 PÔLES


TYPE DE POMPE	VERSION	MO	TEUR						D	IMENSI	ONS (mr	n)						PN	POIDS
FOWIFE	VE	kW	TAILLE	Α	A1	D	Н	Н1	L	L1	L2	М	М1	N	N1	Р	K	bar	kg
22HM02		2,2	90	144	153	174	224	90	534	176	144	125	150	140	164	12,5	10	10	23
22HM03		3	90	144	153	174	224	90	534	176	144	125	150	140	164	12,5	10	10	26
22HM04	SÉ	4	100	192	201	197	254	100	611	244	163	140	170	160	184	15	12	10	33
22HM05	TRIPHA!	5,5	112	240	249	214	280	112	693	299	170	140	170	190	219	15	12	10	42
	TRI																		

Il est possible d'utiliser les pompes jusqu'à PN16 en montant une garniture mécanique PN16. Pour la garniture mécanique, voir le tableau TYPE DE JOINT à la page 15.

22hm-s-n-2p50-fr_d_td

SÉRIES 22HM..S - 22HM..N CARACTÉRISTIQUES DE FONCTIONNEMENT À 50 Hz, 2 PÔLES

e-HME: VERSION AVEC VARIATEUR ET MOTEUR À AIMANTS PERMANENTS (VARIATEUR DE VITESSE e-SM)

SÉRIES e-HME (e-HM SMART)

Contexte et informations utiles

Dans chaque secteur, de la construction et l'industrie à l'agriculture et les applications du bâtiment, le besoin de systèmes de pompage intelligents, compacts et de grande efficacité est en augmentation constante.

C'est pourquoi Lowara a développé la série e-HME : un système de pompage intelligent intégré avec un moteur à aimants permanents et entraînement électronique (niveau d'efficacité IE5).

Le système de commande intégré, combiné à une grande efficacité, à la puissance et au rendement du moteur et du système hydraulique, garantit des coûts de fonctionnement extrêmement bas. Vous bénéficiez également de flexibilité, précision et de sa taille ultra-compacte.

Économies

Le moteur à aimants permanents et le circuit électronique sont très efficaces et réduisent les pertes d'énergie tout en transférant le maximum d'énergie aux parties hydrauliques de la pompe.

Le système de commande recherché avec microprocesseur intégré règle la vitesse du moteur pour l'adapter au point de fonctionnement requis de la pompe ou du système. Cela réduit le besoin en électricité, conformément aux conditions de travail requises.

Cela permet de faire des économies, surtout dans les systèmes où la demande de la pompe varie dans le temps.

Flexibilité

La taille compacte, la quantité réduite de pertes et les commandes améliorées font de la série Smart e-HM un bon choix pour les applications et systèmes utilisant des pompes à vitesse fixe. La série Smart e-HM est facile à intégrer dans des boucles de commande et de régulation grâce à la grande disponibilité de protocoles de communication compatibles, y compris les entrées analogiques et numériques.

La pompe est équipée d'un capteur de pression.

Facilité d'utilisation et de mise en service

Smart e-HM a une interface intuitive qui guide l'utilisateur à travers l'installation, et une zone pratique pour assister avec les connexions.

Le système de commande est intégré et aucun tableau électrique externe supplémentaire n'est nécessaire.

Domaines d'application

- Systèmes d'alimentation en eau dans les bâtiments résidentiels
- Climatisation
- Installations de traitement d'eau
- Installations industrielles

Système e-SM

- Alimentation monophasée: 208-240 V +/- 10%, 50/60 Hz
- Alimentation triphasée :
 - de 0,37 à 1,5 kW :

208-240 / 380-460 V +/- 10%, 50/60 Hz

- 2,2 kW : 380-460 V +/- 10%, 50/60 Hz
- Puissance jusqu'à 2,2 kW
- Classe de protection IP 55
- Peut être reliée jusqu'à 3 pompes Smart e-HM

Pompe

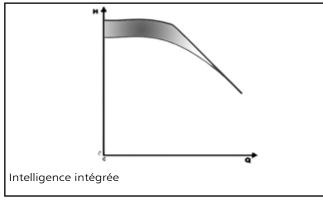
- Débit : jusqu'à 29 m³/h
- Hauteur manométrique : jusqu'à 158 m
- Température ambiante : -20 ° C à +50 ° C sans réduction des performances
- Température du liquide pompé : jusqu'à +120°C
- Pression de service maximale 16 bar (PN 16)
- Les performances hydrauliques répondent aux tolérances spécifiées par la norme ISO 9906:2012

Moteur

- Niveau d'efficacité IE5 (IEC TS 60034-30-2:2016)
- Moteur électrique synchrone avec aimants permanents (TEFC), structure fermée, refroidi par air
- Classe d'isolation 155 (F)
- Protection contre les surcharges et rotor bloqué avec réinitialisation automatique intégrée

Règlements (EU) 2019/1781 et 2021/341 Annexe I - point 4 (Informations de production)

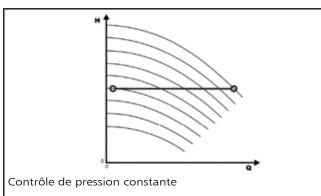
Les exigences ne s'appliquent pas à ces variateurs de vitesse, car ils sont intégrés dans les moteurs à aimants permanents, qui ne sont pas concernés par les mêmes règlements.

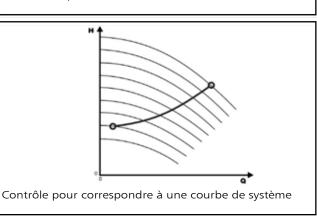

SÉRIES e-HME (e-HM SMART)

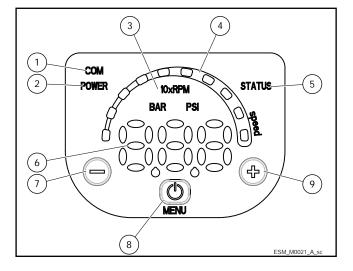
La série Smart e-HM est équipée d'une commande intelligente qui optimise les performances hydrauliques tout en réduisant le gaspillage.

Intelligence intégrée: La commande électronique du moteur permet une augmentation de 20 % des performances par rapport à une pompe à vitesse fixe équivalente (zone mise en évidence dans l'image « Intelligence intégrée »).

Interface simple et intuitive: Vous pouvez commander l'unité avec trois boutons seulement, avec un affichage facile à lire pour les paramètres et les alarmes, conçu pour un contrôle complet du fonctionnement du système.

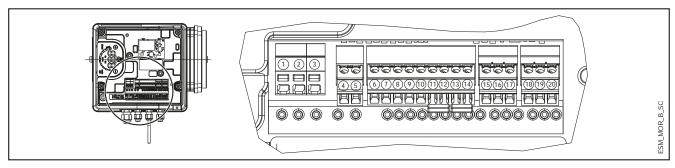

1 LED de communication

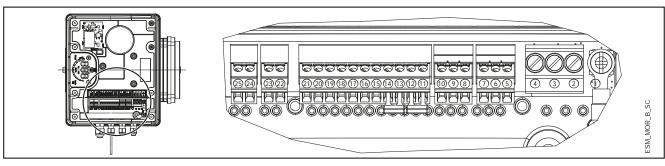



1) LED de communication
2) LED d'alimentation
3) LED d'unité de mesure
4) Barre de LED de vitesse
5) LED d'état
6) Afficheur numérique
7) Touche 8) Touche On/Off et Menu
9) Touche +

Réglage: Le réglage est possible à pression constante et selon la courbe caractéristique du système, en fonction des préférences du client.

Une autre option est en fonction d'un signal externe ou à une vitesse prédéfinie.

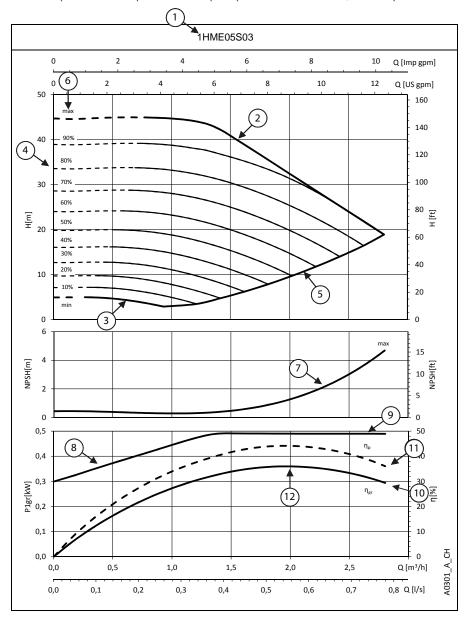



SÉRIES e-HME BORNIER MONOPHASÉ

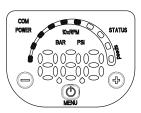
REP.	COMPOSANT	DESCRIPTION
4	Voyant d'erreur	COM - relais d'état d'erreur
5	Voyant defreui	NO - relais d'état d'erreur
6	Tension de l'alimentation auxiliaire	Tension d'alimentation auxiliaire +15 Vdc
7	Entrée analogique 0-10 V	Entrée 0-10 V mode actionneur
8	Littlee analogique 0-10 v	GND pour entrée 0-10 V
9	Capteur de pression externe [différentielle	Capteur externe d'alimentation +15 Vdc
10	comprise]	Entrée 4-20 mA capteur externe
11	Marche/Arrêt externe	Référence d'entrée ON/OFF externe
12	ivialche/Arret externe	Entrée ON/OFF externe
13	Mangue d'eau externe	Entrée d'eau faible
14	ivianque d'eau externe	Référence niveau d'eau bas
15		RS485, port 1: RS485-1N B (-)
16	Bus de communication	RS485, port 1: RS485-1P A (+)
17		Masse électronique
18		RS485, port 2: RS485, port 2: RS485-2N B (-) actif uniquement avec module
18		facultatif
10	Bus de communication	RS485, port 2: RS485, port 2: RS485-2P A (+) actif uniquement avec module
19		facultatif
20		Masse électronique

MorsM-fr_a_sc

BORNIER TRIPHASÉ


REP.	COMPOSANT	DESCRIPTION
5		Masse électronique
6	Bus de communication	RS485, port 1 : RS485-1P A (+)
7		RS485, port 1: RS485-1N B (-)
8		Masse électronique
9	Bus de communication	RS485, port 2 : RS485, port 2 : RS485-2P A (+) actif uniquement avec module facultatif
10		RS485, port 2 : RS485, port 2 : RS485-2N B (-) actif uniquement avec module facultatif
11	Mangue d'eau externe	Référence niveau d'eau bas
12	iviarique à cau externe	Entrée d'eau faible
13	Marche/Arrêt externe	Référence d'entrée ON/OFF externe
14	ivial chicy Affect externe	Entrée ON/OFF externe
15	Capteur de Pression externe	Entrée 4-20 mA capteur externe
16	·	Capteur externe d'alimentation +15 Vdc
17	Capteur de pression externe [différentielle	Entrée 4-20 mA capteur externe
18	comprise]	Capteur externe d'alimentation +15 Vdc
19	Entrée analogique 0-10 V	GND pour entrée 0-10 V
20	Littlee alialogique 0-10 V	Entrée 0-10 V mode actionneur
21	Tension de l'alimentation auxiliaire	Tension d'alimentation auxiliaire +15 Vdc
22	Signal de fonctionnement du moteur	Contact ouvert normalement
23	Jagnar de Torrettormente du motedi	Contact commun
24	Voyant d'erreur	NO - relais d'état d'erreur
25	Voyant defredi	COM - relais d'état d'erreur

MorsT-fr_a_sc


SÉRIES e-HME LECTURE DES COURBES DES POMPES DE LA SÉRIE SMART

Afin d'exploiter tout le potentiel des pompes de la série Smart, il est important de bien lire les courbes de fonctionnement.

- 1 Modèle pompe
- (2) **Courbe maximale**: correspond à 3 600 tr/min ou au fonctionnement de la pompe à la puissance nominale.
- (3) Courbe minimale : vitesse minimale de rotation possible du moteur, calculée selon le modèle de la pompe en maximisant la zone de fonctionnement de chaque groupe de surpression et en permettant au système d'être le plus flexible possible.
- 4 Les **lignes pointillées** indiquent la zone dans laquelle la pompe ne peut fonctionner que de façon intermittente pendant de courtes période.
- (5) Chaque **courbe intermédiaire** entre les courbes de vitesse maximale et minimale indique le taux de charge auquel le système p o m p e + m o t e u r + v a r i a t e u r fonctionne ; la lecture est également facile sur la barre de LED de vitesse du clavier de l'interface homme-machine : à 90 %, 9 LED, à 80 %, 8 LED, etc.

Exemple : à 60 %, 6 LED seront allumées

- (6) Le **taux de charge partielle** est calculé en fonction de la vitesse maximale (*max.*, 100 %) et de la vitesse minimale (*min.*, égale à 0 %, soit le plus bas niveau de charge partielle en-dessous duquel le variateur de vitesse reste alimenté, mais ne peut pas fonctionner).
- **7) NPSH (Net Positive Suction Head)**: soit la charge nette absolue à l'aspiration du système pompe+moteur+variateur fonctionnant à la vitesse maximale.
- **P1** puissance absorbée en kW du système pompe+moteur+variateur fonctionnant à la vitesse maximale.
- (9) **Régulateur de charge** : la pompe de la série Smart régule et limite la consommation d'énergie à haut débit/faible hauteur ; le moteur est ainsi protégé contre la surcharge et la durée de vie du système

pompe+moteur+variateur est prolongée.

- (10) η_{gr} : rendement du système pompe+moteur+variateur fonctionnant à la vitesse maximale.
- (1) $\mathbf{n_p}$: rendement de la partie hydraulique fonctionnant à la vitesse maximale.
- (12) **Point de fonctionnement** : il est important d'utiliser la pompe à son meilleur point de fonctionnement, celui qui assure le meilleur rendement.

Il est facile à trouver puisque c'est le plus haut point de la courbe de rendement de la pompe HP; après l'avoir trouvé, vous pouvez aussi repérer les valeurs de débit (Q) sur l'axe X et les valeurs de hauteur manométrique (H) sur l'axe Y, qui permettent au système de tourner au meilleur point de fonctionnement.

SÉRIE e-HME - VERSION MONOPHASÉE TABLEAU DES PERFORMANCES HYDRAULIQUES

TYPE DE		MOTEUR	e-SI	M SET				Q = D	ÉBIT			
POMPE				*1	l/min 0	6,7	13,3	20,0	26,7	33,3	40,0	46,7
HMES, HMEN	P _N	TYPE	* P ₁	208-240 V	m³/h 0	0,4	0,8	1,2	1,6	2,0	2,4	2,8
Monophasée	kW	1x230 V	kW	Α		Н =	TOTAL I	HAUTEUF	MANO	MÉTRIQU	JE	
1HME05S03M02	0,37	ESM80/103 HM	0,49	2,24	44,7	44,8	44,9	44,1	39,2	32,5	25,7	
1HME08S05M02	0,55	ESM80/105 HM	0,69	3,07	71,6	71,5	71,7	70,4	60,3	50,0	39,6	
1HME11S07M02	0,75	ESM80/107 HM	0,91	4,04	98,5	98,5	98,8	94,3	80,7	66,8	52,9	
1HME15S11M02	1,1	ESM80/111 HM	1,33	5,85	134,0	134,4	134,6	132,3	119,5	99,5	79,6	
1HME17S15M02	1,5	ESM80/115 HM	1,77	7,77	151,8	152,2	152,7	149,6	141,6	128,6	110,7	

TYPE DE		MOTEUR	e-SI	M SET				Q = D	ÉBIT			
POMPE				* I	l/min 0	13,3	26,7	40,0	53,3	66,7	80,0	86,7
HMES, HMEN	P _N	TYPE	* P ₁	208-240 V	m³/h 0	0,8	1,6	2,4	3,2	4,0	4,8	5,2
Monophasée	kW	1x230 V	kW	Α		. н =	TOTAL I	HAUTEUI	R MANOI	MÉTRIQU	JE	
3HME03S03M02	0,37	ESM80/103 HM	0,49	2,24	33,3	33,9	33,4	31,5	25,6	20,1	14,6	11,8
3HME05S05M02	0,55	ESM80/105 HM	0,69	3,07	55,5	56,5	55,7	47,5	38,2	29,4	20,5	16,0
3HME07S07M02	0,75	ESM80/107 HM	0,91	4,06	77,6	79,1	78,1	64,9	52,0	39,8	27,5	21,3
3HME09S11M02	1,1	ESM80/111 HM	1,33	5,85	99,8	101,8	100,3	93,6	76,1	59,6	43,0	34,7
3HME12S15M02	1,5	ESM80/115 HM	1,78	7,80	133,1	135,9	133,6	127,3	103,6	81,5	59,2	48,1

TYPE DE		MOTEUR	e-SI	M SET				Q = D	ÉBIT			
POMPE				* I	l/min 0	23,3	46,7	70,0	93,3	116,7	140,0	170,0
HMES, HMEN	P _N	TYPE	* P ₁	208-240 V	m³/h 0	1,4	2,8	4,2	5,6	7,0	8,4	10,2
Monophasée	kW	1x230 V	kW	Α		Н =	TOTAL I	HAUTEUF	MANO	MÉTRIQU	JE	
5HME02S03M02	0,37	ESM80/103 HM	0,49	2,24	22,2	22,4	21,9	19,8	16,2	13,0	9,9	6,0
5HME03S05M02	0,55	ESM80/105 HM	0,69	3,07	33,3	33,6	32,9	29,5	24,1	19,3	14,7	8,8
5HME04S07M02	0,75	ESM80/107 HM	0,91	4,05	44,4	44,7	43,8	40,1	32,8	26,4	20,2	12,2
5HME06S11M02	1,1	ESM80/111 HM	1,33	5,85	66,7	67,2	65,8	59,0	48,1	38,7	29,5	17,5
5HME08S15M02	1,5	ESM80/115 HM	1,78	7,82	88,9	89,5	87,7	80,2	65,5	52,8	40,4	24,4

TYPE DE		MOTEUR	e-Si	M SET				Q = D	ÉBIT			
POMPE				* I	l/min 0	40,0	80,0	120,0	160,0	200,0	240,0	283,3
HMES, HMEN	P_N	TYPE	* P ₁	208-240 V	m³/h 0	2,4	4,8	7,2	9,6	12,0	14,4	17,0
Monophasée	kW	1x230 V	kW	Α	H = TOTAL HAUTEUR MANOMÉTRIQUE							
10HME01S07M02	0,75	ESM80/107 HM	0,86	3,80	17,5	17,5	17,0	16,1	14,7	12,7	10,2	6,6
10HME02S11M02	1,1	ESM80/111 HM	1,33	5,85	34,8	34,9	33,8	32,3	27,2	21,9	16,6	11,1
10HME03S15M02	1.5	ESM80/115 HM	1.78	7,81	52,4	51.8	50.6	46.9	39.2	32.2	25.3	17.8

TYPE DE		MOTEUR e-SM SET						Q = D	ÉBIT			
POMPE				* I	l/min 0	70,0	140,0	210,0	280,0	350,0	420,0	483,3
HMES, HMEN	P_N	TYPE	* P ₁	208-240 V	m³/h 0	4,2	8,4	12,6	16,8	21,0	25,2	29,0
Monophasée	kW	1x230 V	kW	Α	H = TOTAL HAUTEUR MANOMÉTRIQUE						JE	
15HME01S11M02	1,1	ESM80/111 HM	1,33	5,85	20,9	20,5	19,7	18,8	16,4	12,7	8,8	5,2
15HME02S15M02	1,5	ESM80/115 HM	1,79	7,85	42,7	41,8	35,9	29,8	24,2	18,2	11,3	5,1

^{*} Valeur maximale dans la plage spécifiée: P1 = Puissance d'entrée; I = Courant d'entrée.

1-15hmes-esm-2p50-fr_a_th

SÉRIE e-HME - VERSION TRIPHASÉE TABLEAU DES PERFORMANCES HYDRAULIQUES

TYPE DE		MOTEUR		GROUPE e-	SM				Q = D	EBIT			
POMPE				* I	* I	l/min 0	6,7	13,3	20,0	26,7	33,3	40,0	46,7
HMES, HMEN	PN	TYPE	* P1	208-240 V	380-460 V	m3/h 0	0,4	0,8	1,2	1,6	2,0	2,4	2,8
Triphasé	kW		kW	Α	Α	н	= HAUT	EUR MAI	NOMÉTR	IQUE TO	TALE EN	MÈTRES	i
1HME05S03T	0,37	ESM80/303 HM	0,49	2,14	1,46	44,7	44,8	44,9	44,1	39,2	32,5	25,7	19,0
1HME08S05T	0,55	ESM80/305 HM	0,69	2,81	1,90	71,6	71,5	71,7	70,4	60,3	50,0	39,6	29,0
1HME11S07T	0,75	ESM80/307 HM	0,91	2,41	2,41	98,5	98,5	98,8	94,3	80,7	66,8	52,9	38,6
1HME15S11T	1,1	ESM80/311 HM	1,37	4,94	3,45	134,0	134,4	134,6	132,3	119,5	99,6	79,6	59,6
1HME17S15T	1,5	ESM80/315 HM	1,81	4,39	4,39	151,8	152,2	152,7	149,6	141,6	128,6	110,7	87,1

TYPE DE		MOTEUR		GROUPE e-	SM				Q = D	EBIT			
POMPE				* 1	* 1	l/min 0	13,3	26,7	40,0	53,3	66,7	80,0	86,7
HMES, HMEN	PN	TYPE	* P1	208-240 V	380-460 V	m3/h 0	0,8	1,6	2,4	3,2	4,0	4,8	5,2
Triphasé	kW		kW	Α	Α	н	= HAUT	EUR MAI	NOMÉTR	IQUE TO	TALE EN	MÈTRES	
3HME03S03T	0,37	ESM80/303 HM	0,49	2,14	1,47	33,3	33,9	33,4	31,5	25,6	20,1	14,5	11,8
3HME05S05T	0,55	ESM80/305 HM	0,70	2,81	1,92	55,5	56,5	55,7	47,5	38,2	29,4	20,4	16,0
3HME07S07T	0,75	ESM80/307 HM	0,92	3,55	2,43	77,6	79,1	78,1	64,9	52,1	39,8	27,5	21,3
3HME09S11T	1,1	ESM80/311 HM	1,37	4,95	3,45	99,8	101,8	100,3	93,7	76,1	59,6	43,0	34,7
3HME12S15T	1,5	ESM80/315 HM	1,82	6,37	4,42	133,1	135,9	133,6	127,3	103,6	81,5	59,2	48,1
3HME14S22T04	2,2	ESM80/322 HM	2,53	-	5,84	155,4	158,3	156,1	149,5	139,0	121,7	93,9	79,8

TYPE DE		MOTEUR		GROUPE e-	SM				Q = D	EBIT						
POMPE				* 1	* 1	l/min 0	23,3	46,7	70,0	93,3	116,7	140,0	170,0			
HMES, HMEN	PN	TYPE	* P1	208-240 V	380-460 V	m3/h 0	1,4	2,8	4,2	5,6	7,0	8,4	10,2			
Triphasé	kW		kW A A H = HAUTEUR MANOMÉTRIQUE TOTALI									EN MÈTRES				
5HME02S03T	0,37	ESM80/303 HM	0,50	2,13	1,48	22,2	22,4	21,9	19,8	16,2	13,0	9,9	6,0			
5HME03S05T	0,55	ESM80/305 HM	0,70	2,80	1,92	33,3	33,6	32,9	29,5	24,1	19,3	14,7	8,8			
5HME04S07T	0,75	ESM80/307 HM	0,92	3,55	2,42	44,4	44,7	43,8	40,1	32,8	26,4	20,2	12,2			
5HME06S11T	1,1	ESM80/311 HM	1,38	4,97	3,46	66,7	67,2	65,8	59,0	48,1	38,7	29,5	17,5			
5HME08S15T	1,5	ESM80/315 HM	1,83	6,40	4,44	88,9	89,5	87,7	80,2	65,5	52,8	40,5	24,4			
5HME10S22T04	2,2	ESM80/322 HM	2,54	-	5,87	111,1	111,8	109,5	105,3	95,0	77,9	61,6	40,4			

TYPE DE		MOTEUR		GROUPE e-	SM				Q = D	EBIT			
POMPE				* 1	* 1	l/min 0	40,0	80,0	120,0	160,0	200,0	240,0	283,3
HMES, HMEN	PN	TYPE	* P1	208-240 V	380-460 V	m3/h 0	2,4	4,8	7,2	9,6	12,0	14,4	17,0
Triphasé	kW		kW	Α	Α	H = HAUTEUR MANOMÉTRIQUE TOTALE EN MÈTRES							
10HME01S07T	0,75	ESM80/307 HM	0,84	3,39	2,24	17,5	17,4	16,9	16,1	14,7	12,7	10,2	6,7
10HME02S11T	1,1	ESM80/311 HM	1,37	4,94	3,45	34,8	34,9	33,8	32,3	27,2	21,9	16,6	11,1
10HME03S15T	1,5	ESM80/315 HM	1,83	6,38	4,43	52,4	51,8	50,6	47,0	39,2	32,2	25,3	17,8
10HME04S22T04	2,2	ESM80/322 HM	2,54	-	5,87	69,8	69,1	67,3	65,1	56,9	47,3	37,8	27,5

TYPE DE		MOTEUR		GROUPE e-	SM				Q = D	EBIT			
POMPE				* I	* I	l/min 0	70,0	140,0	210,0	280,0	350,0	420,0	483,3
HMES, HMEN	PN	TYPE	* P1	208-240 V	380-460 V	m3/h 0	4,2	8,4	12,6	16,8	21,0	25,2	29,0
Triphasé	kW	V KW A A H = HAUTEUR MANOMÉTRIQUE TOTALE EN MÈTRES											
15HME01S11T	1,1	ESM80/311 HM	0,84	3,39	3,45	20,9	20,5	19,7	18,8	16,4	12,7	8,8	5,2
15HME02S15T	1,5	ESM80/315 HM	1,85	6,45	4,47	42,7	41,8	35,9	29,8	24,2	18,2	11,3	5,1
15HME03S22T04	2,2	ESM80/322 HM	2,50	-	5,80	64,0	64,1	50,5	40,6	31,9	23,4	15,4	10,0

^{*} Valeur maximale dans la plage spécifiée : P1 = alimentation d'entrée ; l = courant d'entrée.

1-15hmes-esmT-2p50-fr_a_th

SÉRIES e-HME TABLEAU DES CARACTÉRISTIQUES ÉLECTRIQUES

La puissance nominale du moteur est garantie dans la plage 3 000-3 600 tr/min. Le moteur est automatiquement limité à un maximum de 3 600 tr/min ; le moteur fonctionne à charge partielle en dessous de 3 000 tr/min.

VERSION MONOPHASÉE

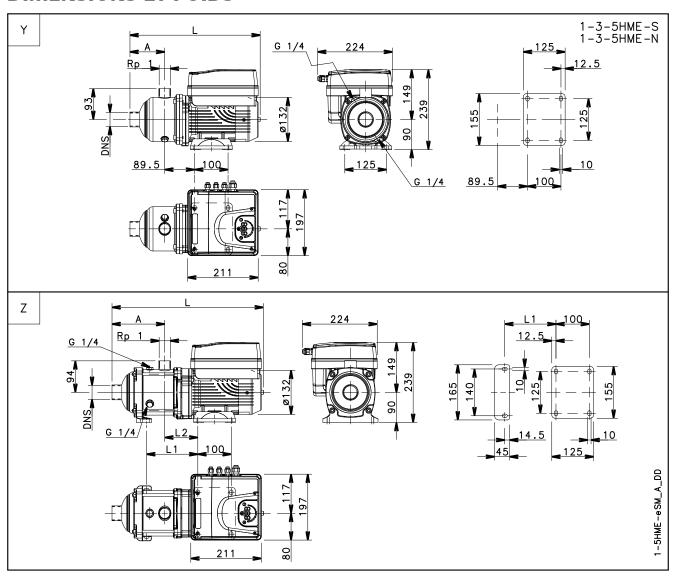
P _N		CEI	Forme de construction	VITESSE	COURANT ABSORBE			DONNÉES	POUR TEN	SION 230V		
	TYPE MOTEUR	TAILLE	Forme	(RPM)	I (A)	In	cosφ	Tn		η%		IES
kW		1	ng S	min ⁻¹	208-240 V	Α		Nm	4/4	3/4	2/4	
0,37	ESM80/103 HM	80		3000	2,28-1,99	2,08	0,95	1,18	81,3	79,1	74,3	2
0,57	L310100/103 11101	0		3600	2,30-2,02	2,10	0,55	0,98	80,6	77,5	72,0	۷
0,55	ESM80/105 HM	80		3000	3,27-2,85	2,96	0,97	1,75	83,3	82,2	78,8	2
0,55	LSIVIOU/ TOS TIIVI	00		3600	3,27-2,85	2,96	0,57	1,46	83,3	81,5	77,5	2
0,75	ESM80/107 HM	80	PECIAL	3000	4,43-3,84	4,00	0,98	2,39	83,3	83,3	81,5	2
0,75	L31V100/107 111V1	80		3600	4,38-3,79	3,94	0,36	1,99	84,5	83,5	80,6	۷
1,10	ESM80/111 HM	80	S	3000	6,26-5,35	5,64	0,99	3,50	85,7	85,1	82,7	2
1,10	LJIVIOU/ I I I I IIVI	80		3600	6,20-5,32	5,63	0,55	2,92	85,9	84,6	81,4	2
1,50	ESM80/115 HM	80		3000	8,57-7,32	7,69	0,99	4,77	85,6	85,7	84,7	2
1,50	ESIVIOU/ I I S MIVI	80		3600	8,42-7,25	7,62	0,99	3,98	86,3	85,9	84,0	2

^{*} Les vitesses de rotation indiquées représentent les limites inférieure et supérieure de la plage de fonctionnement à la puissance nominale.

 $eHM\text{-}eVM_Smart\text{-}motm_fr_a_te$

VERSION TRIPHASÉE

P _N		IEC	de tion	VITESSE	COURANT D'ENTRÉE		DON	NÉES PC	UR TEN	SION 400) V	
F _N	TYPE DE MOTEUR	TAILLE	Forme de construction	(TR/MIN) *	I (A)	In	cosφ	Tn		η%		IES
kW		₹	윤등	min ⁻¹	208-240/380-460 V	Α		Nm	4/4	3/4	2/4	
0,37	ESM80/303 HM	80		3000	2,01-1,85/1,41-1,28	1,42	0,48	1,18	78,6	75,6	70,1	2
0,57	ESIVIOU/SUS FIIVI	80		3600	2,13-1,83/1,43-1,33	1,36	0,46	0,98	83,1	80,7	76,1	
0,55	ESM80/305 HM	80		3000	2,81-2,57/1,89-1,69	1,88	0,52	1,75	81,1	79,3	75,5	2
0,55	ESIVIOU/SUS FIIVI	80		3600	2,90-2,52/1,90-1,73	1,80	0,32	1,46	85,4	83,8	80,6	
0,75	ESM80/307 HM	80		3000	3,70-3,37/2,44-2,17	2,41	0,55	2,39	81,9	81,2	78,6	2
0,73	ESIVIOU/SUT FIIVI	80	≦	3600	3,74-3,28/2,43-2,20	2,31	0,55	1,99	86,1	85,5	83,1	
1,10	ESM80/311 HM	80	SPECIAL	3000	5,12-4,73/3,41-3,01	3,35	0,57	3,50	82,8	81,3	77,7	2
1,10	ESIVIOU/STI FIIVI	80	S	3600	5,15-4,69/3,45-3,06	3,32	0,57	2,92	83,5	81,6	77,6	
1,50	ESM80/315 HM	80]	3000	6,73-6,17/4,49-3,95	4,39	0,59	4,77	83,1	82,8	80,6	2
1,50	ESIVIOU/S I S MIVI	00		3600	6,69-6,08/4,48-3,97	4,32	0,59	3,98	84,6	83,6	80,8	
2,20	ESM80/322 HM	80		3000	- /6,03-5,32	5,81	0,62	7,00	87,6	87,4	85,9	2
2,20	ESIVIOU/SZZ MIVI	80		3600	- /5,93-5,24	5,74	0,02	5,84	88,9	88,2	86,3]


^{*} Les vitesses de rotation indiquées représentent les limites supérieures et inférieures de la plage de vitesses de fonctionnement à la puissance nominale.

eHM-eVM_Smart-mott-fr_a_te

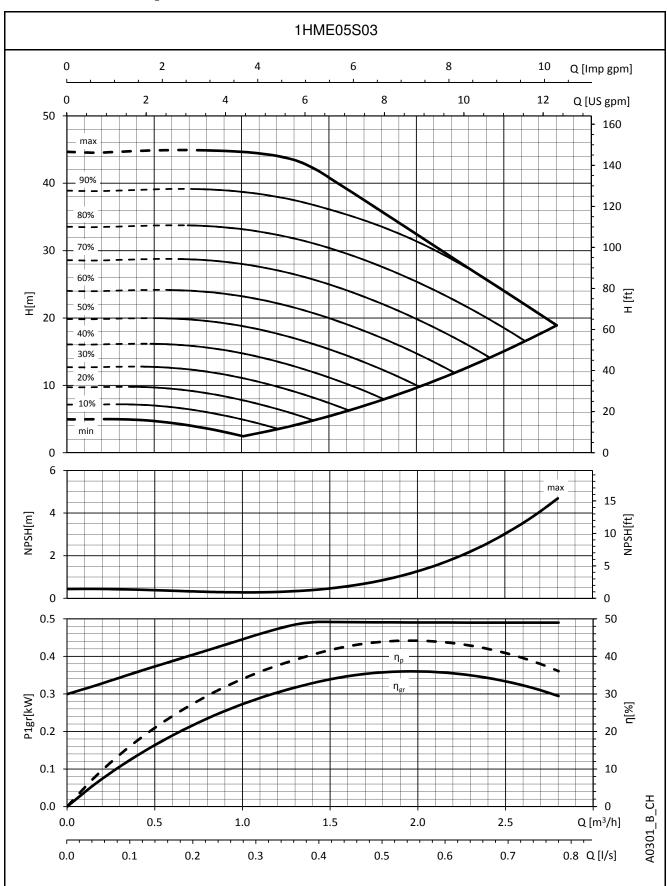
Remarque : **IES** désigne la classe d'efficacité des systèmes convertisseur + moteur (appelés systèmes de transmission de puissance-PDS) d'une puissance comprise entre 0,12 kW et 1000 kW et entre 100 V et 1000 V, conformément à la norme **EN 50598-2:2014**.

SÉRIE 1, 3, 5HME..S - VERSION MONOPHASÉE DIMENSIONS ET POIDS

TYPE DE	VERSION	Réf.	МОТ	EURS		DIN	/IENSIONS (n	nm)		PN	POIDS	
POMPE	VEF		kW	TAILLE	Α	DNS	L	L1	L2	bar	kg	
1HME05S03M02		Υ	0,37	80	127	Rp 1	414	-	-	10	10	
1HME08S05M02			0,55	80	171	Rp 1	467	168	99	10	12	
1HME11S07M02		Z	0,75	80	231	Rp 1	527	228	99	10	13	
1HME15S11M02			1,1	80	311	Rp 1	607	308	99	16	15	
1HME17S15M02			1,5	80	351	Rp 1	647	348	99	16	16	
3HME03S03M02	E.	V	0,37	80	87	Rp 1	374	-	-	10	9	
3HME05S05M02	MONOPHASÉE	Υ	Υ	0,55	80	127	Rp 1	414	-	-	10	10
3HME07S07M02	J AC		0,75	80	151	Rp 1	447	148	99	10	11	
3HME09S11M02	Ž	Z	1,1	80	191	Rp 1	487	188	99	16	14	
3HME12S15M02	Σ		1,5	80	251	Rp 1	547	248	99	16	15	
5HME02S03M02			0,37	80	104	Rp 1 1/4	391	-	-	10	9	
5HME03S05M02		Υ	Υ	0,55	80	104	Rp 1 1/4	391	-	-	10	9
5HME04S07M02			0,75	80	129	Rp 1 1/4	416	-	-	10	10	
5HME06S11M02		Z	1,1	80	158	Rp 1 1/4	454	153	99	10	12	
5HME08S15M02	1	4	1,5	80	208	Rp 1 1/4	504	203	99	10	14	

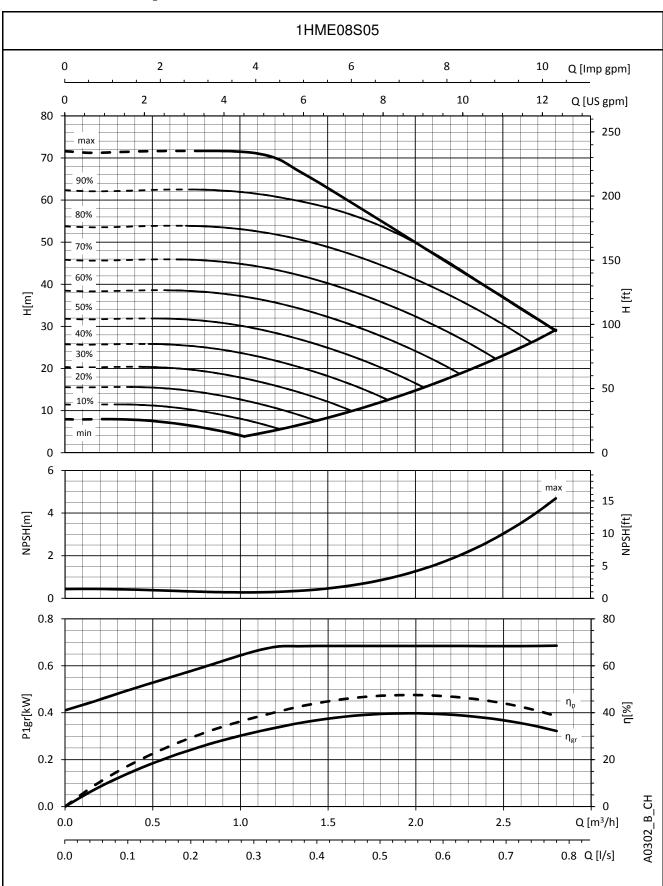
 $1\text{-}5hmes\text{-}esm\text{-}2p50\text{-}fr_a_td$

SÉRIE 1, 3, 5HME..S - VERSION TRIPHASÉE DIMENSIONS ET POIDS

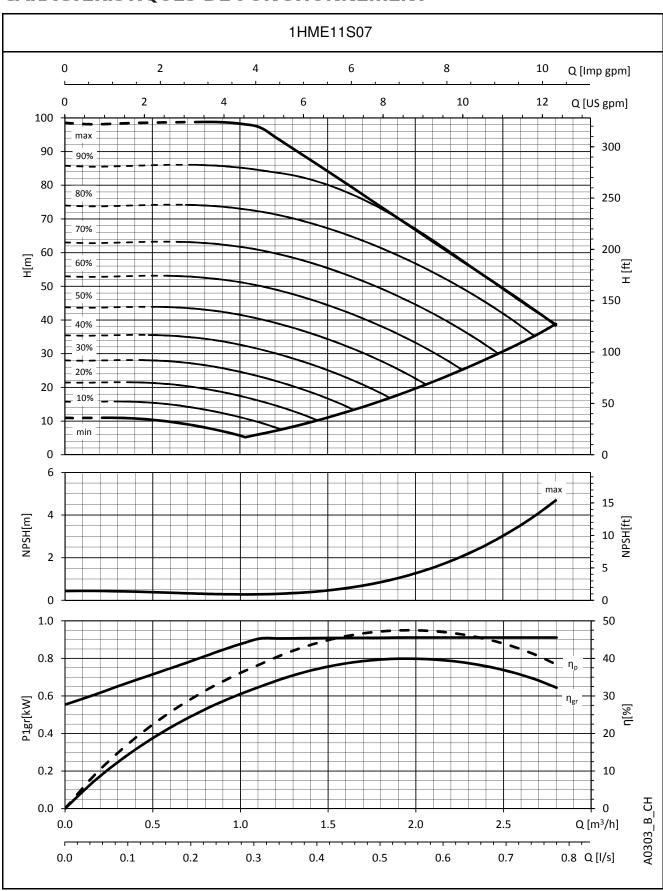


TYPE DE POMPE	VERSION	Réf.	MO.	ΓEUR		DII	MENSIONS (m	im)		PN	POIDS
	₹		kW	TAILLE	Α	DNS	L	L1	L2	bar	kg
1HME05S03T05		Υ	0,37	80	127	Rp 1	414	-	-	10	15
1HME08S05T05			0,55	80	171	Rp 1	467	168	99	10	17
1HME11S07T05		Z	0,75	80	231	Rp 1	527	228	99	10	18
1HME15S11T05			1,1	80	311	Rp 1	607	308	99	16	21
1HME17S15T05			1,5	80	351	Rp 1	647	348	99	16	22
3HME03S03T05		Υ	0,37	80	87	Rp 1	374	-	-	10	15
3HME05S05T05	1	T	0,55	80	127	Rp 1	414	-	-	10	15
3HME07S07T05	\SÉ		0,75	80	151	Rp 1	447	148	99	10	17
3HME09S11T05	TRIPHASÉ	Z	1,1	80	191	Rp 1	487	188	99	16	19
3HME12S15T05	- I		1,5	80	251	Rp 1	547	248	99	16	20
3HME14S22T04			2,2	80	291	Rp 1	587	288	99	16	22
5HME02S03T05			0,37	80	104	Rp 1 1/4	391	-	-	10	15
5HME03S05T05	1	Υ	0,55	80	104	Rp 1 1/4	391	-	-	10	15
5HME04S07T05	1	·	0,75	80	129	Rp 1 1/4	416	-	-	10	15
5HME06S11T05		Z	1,1	80	158	Rp 1 1/4	454	153	99	10	18
5HME08S15T05			1,5	80	208	Rp 1 1/4	504	203	99	10	19
5HME10S22T04			2,2	80	258	Rp 1 1/4	554	253	99	16	22

1-5hmes-esm-2p50T-fr_a_td

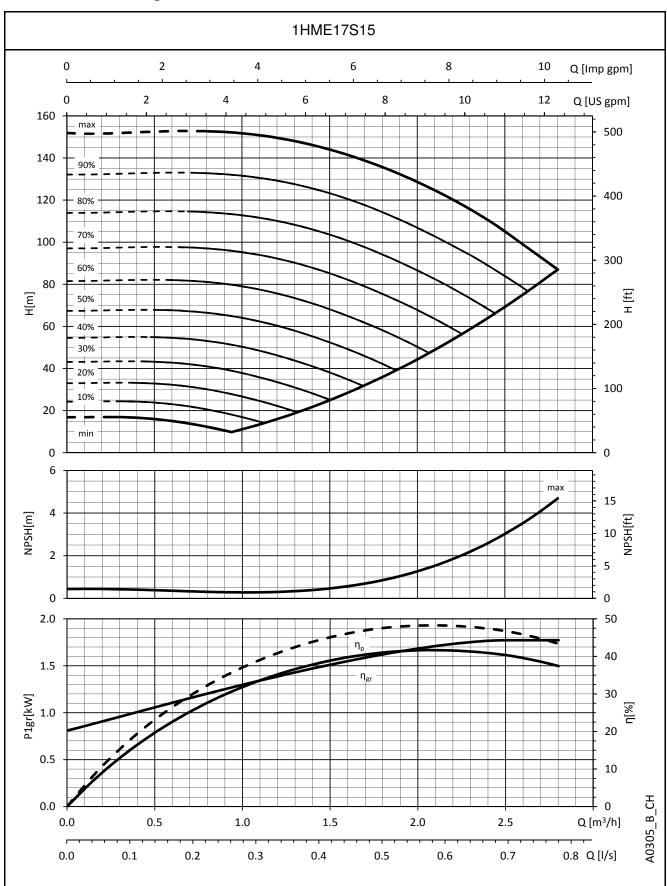


SÉRIES 1HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT

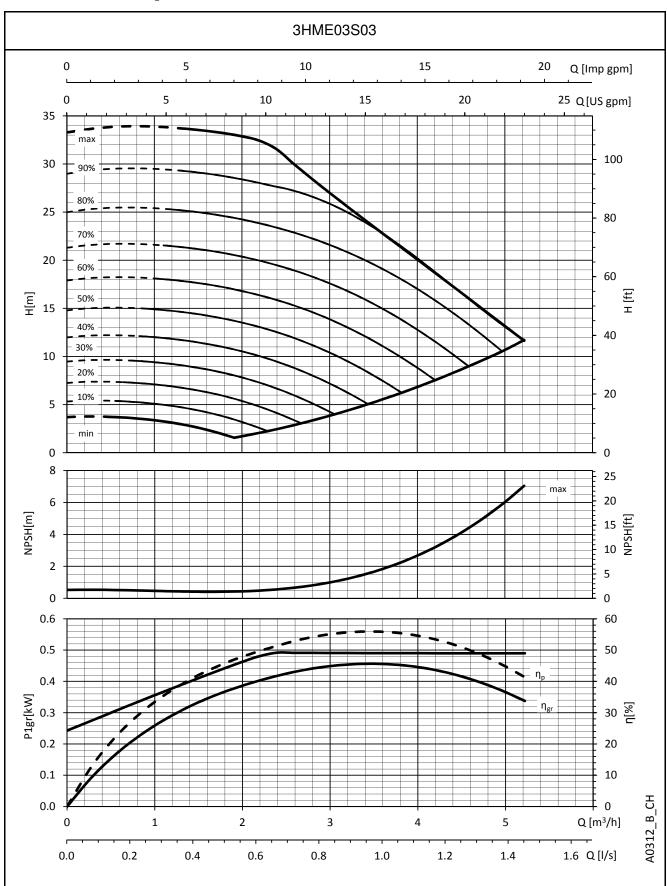


SÉRIES 1HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT

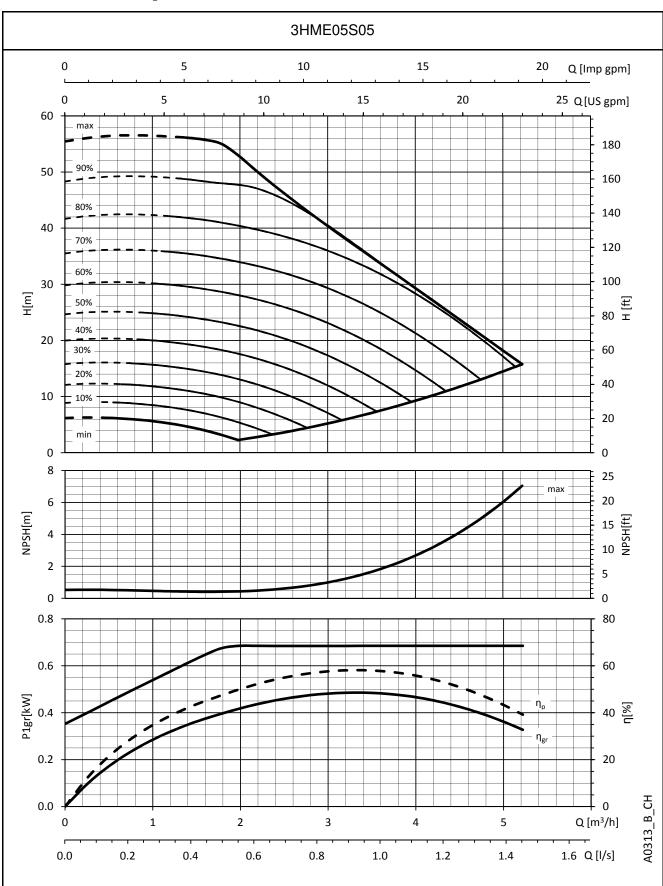
SÉRIES 1HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



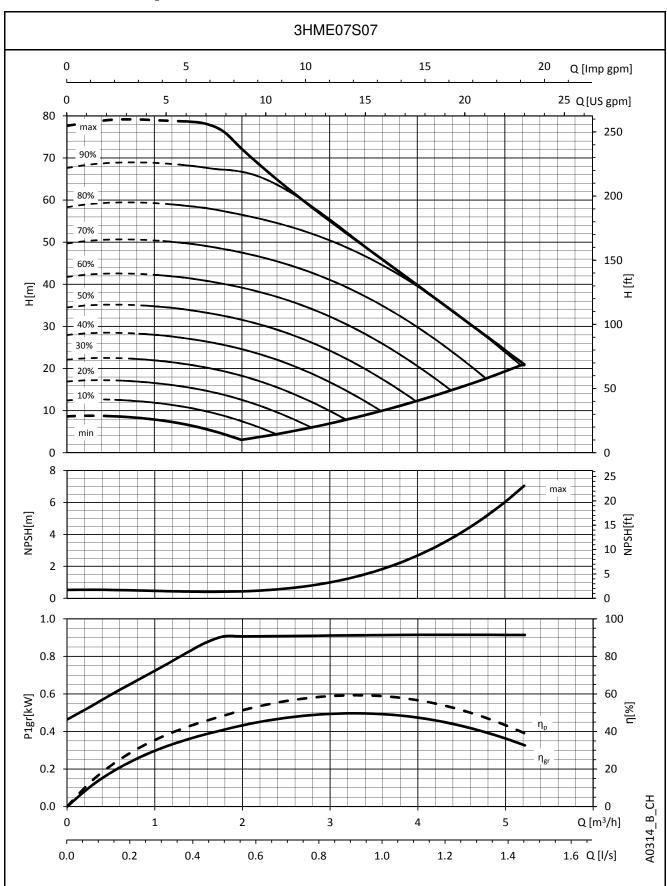
SÉRIES 1HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



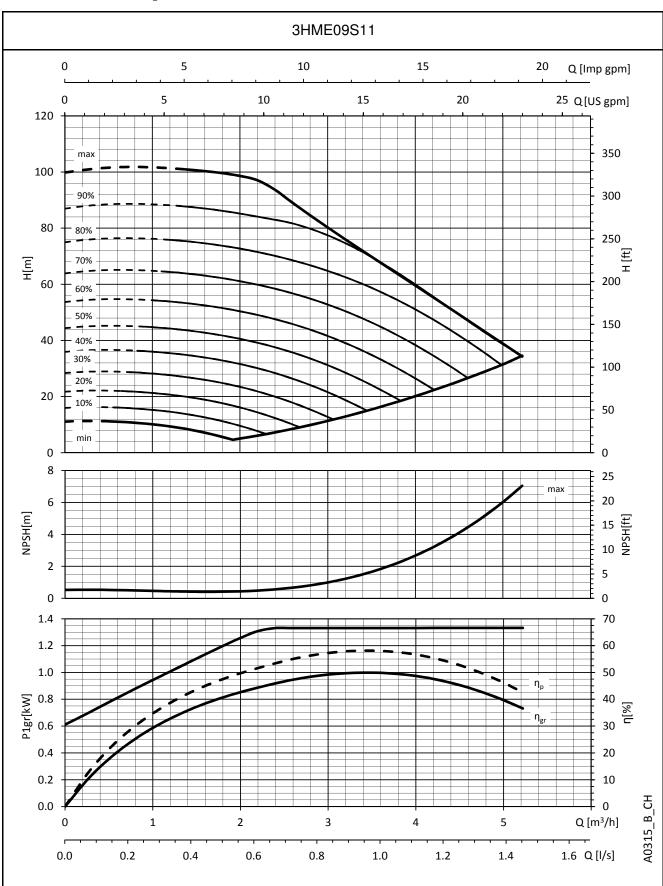
SÉRIES 1HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



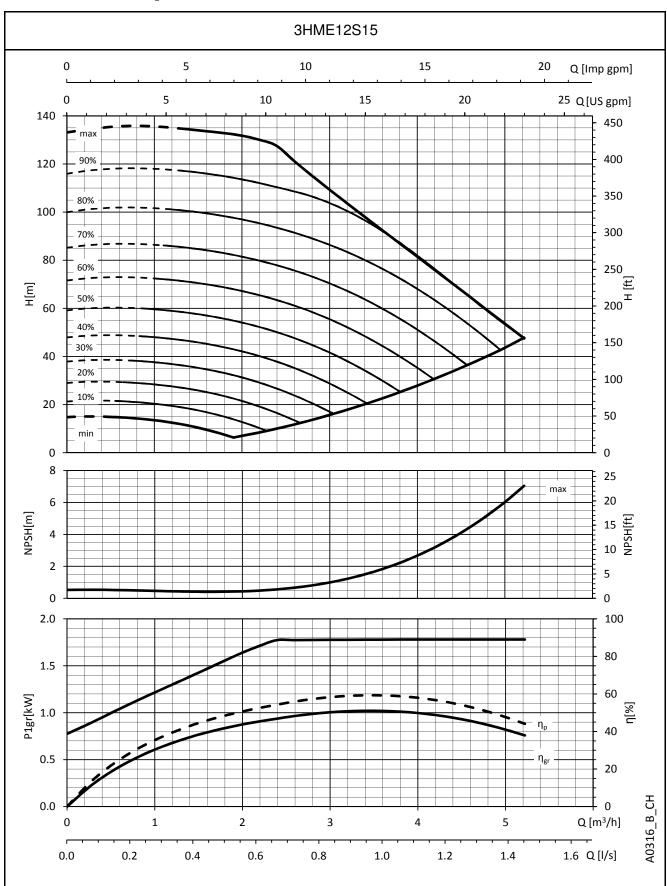
SÉRIES 3HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



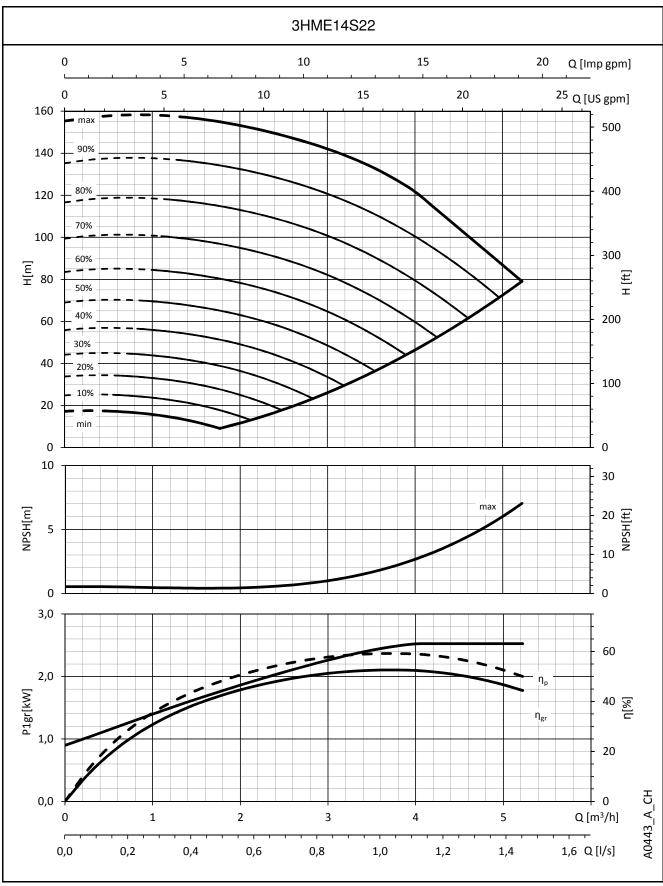
SÉRIES 3HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



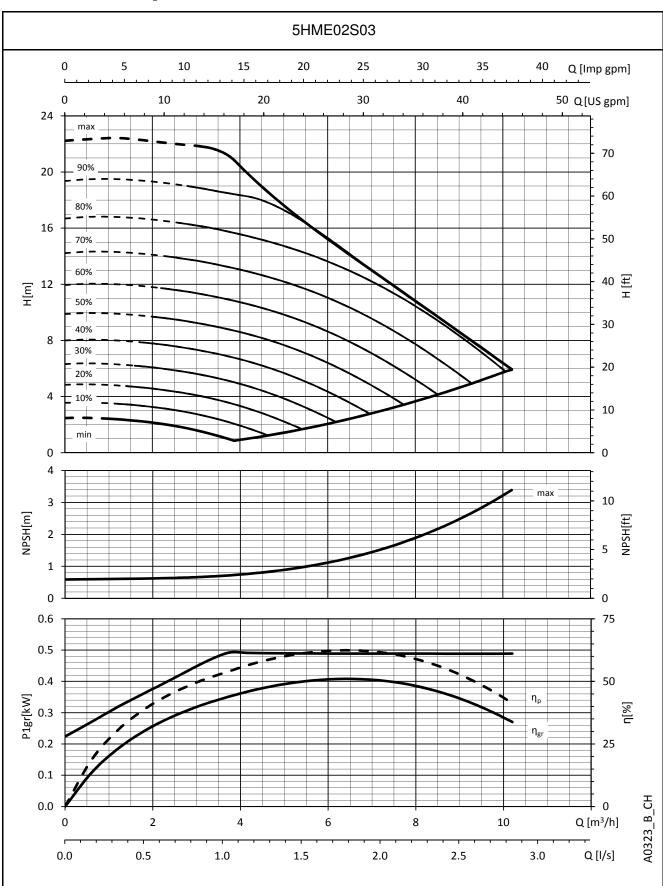
SÉRIES 3HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



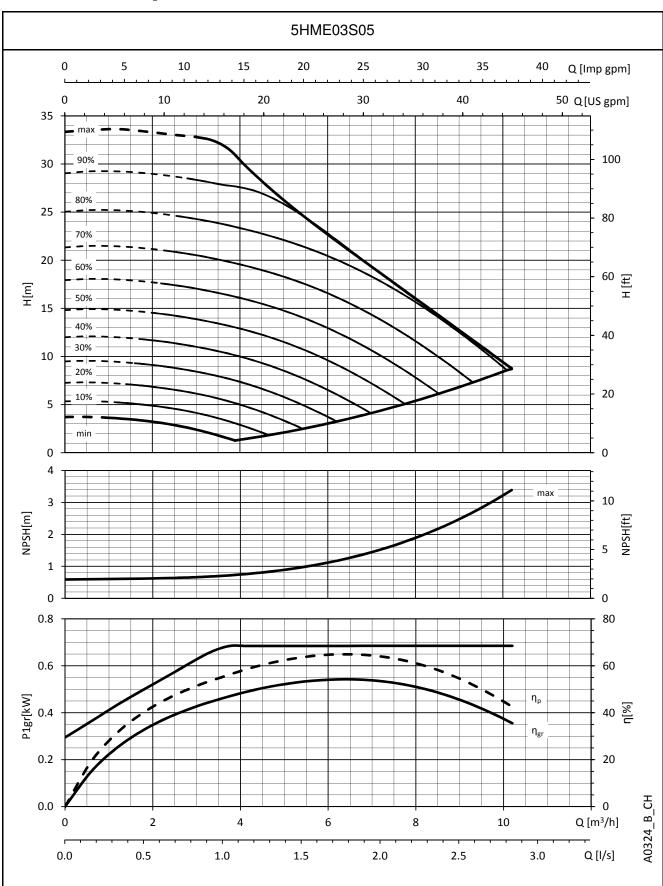
SÉRIES 3HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



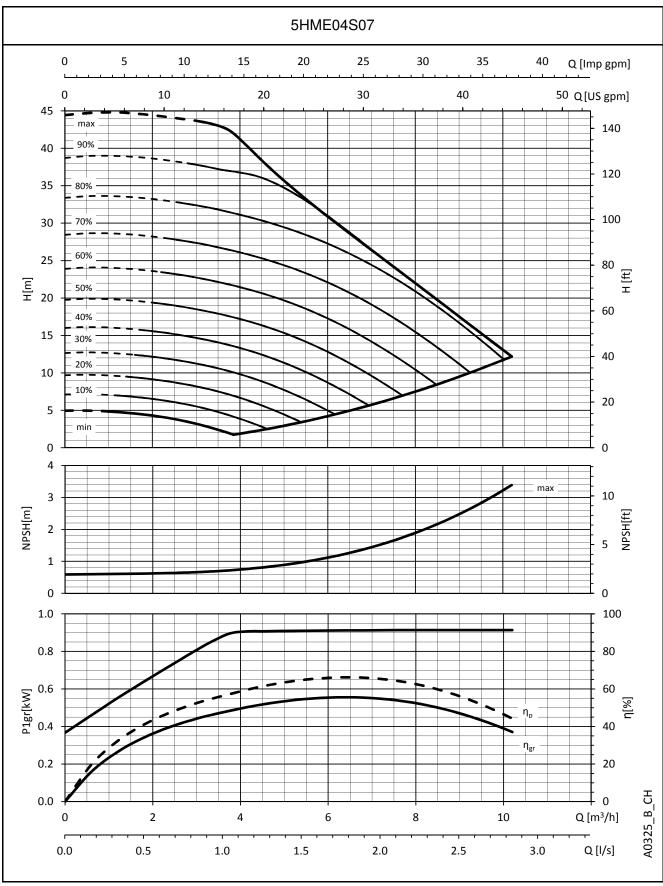
SÉRIES 3HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



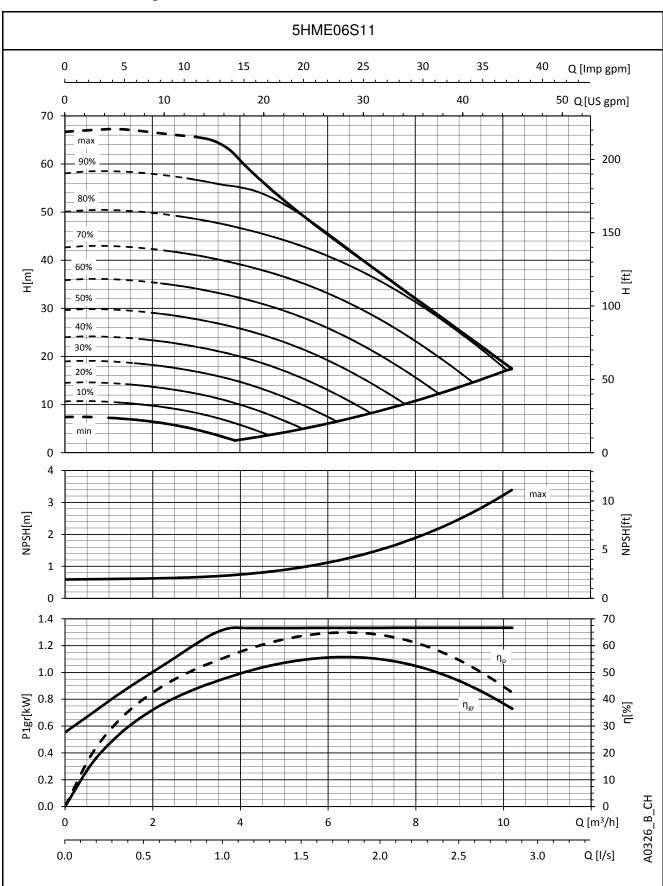
SÉRIES 3HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



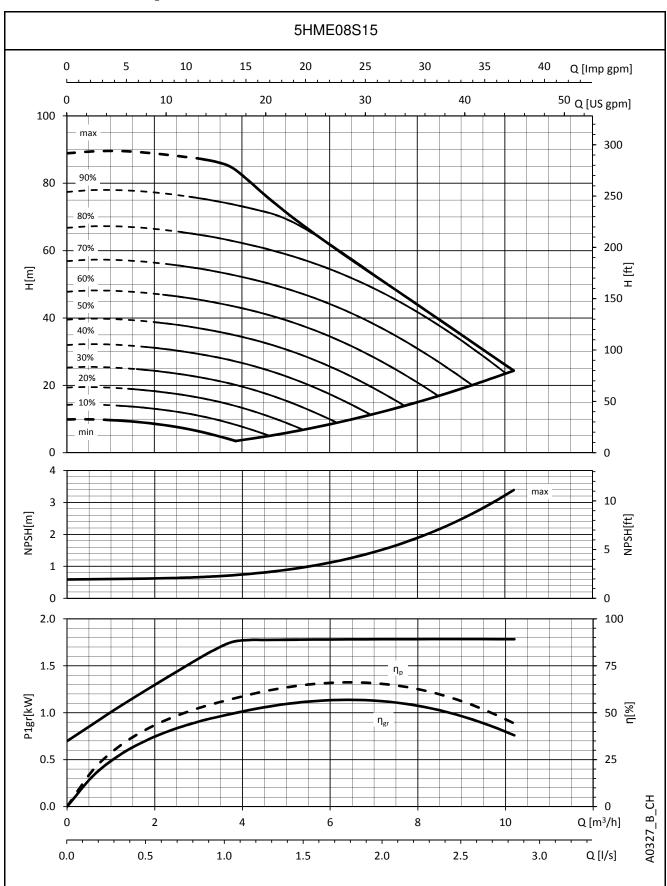
SÉRIES 5HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



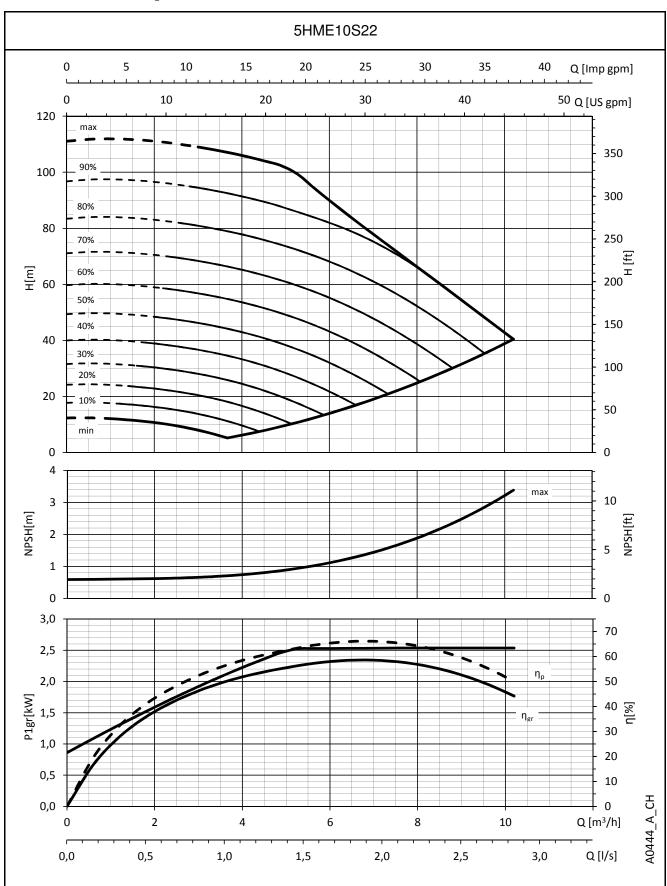
SÉRIES 5HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



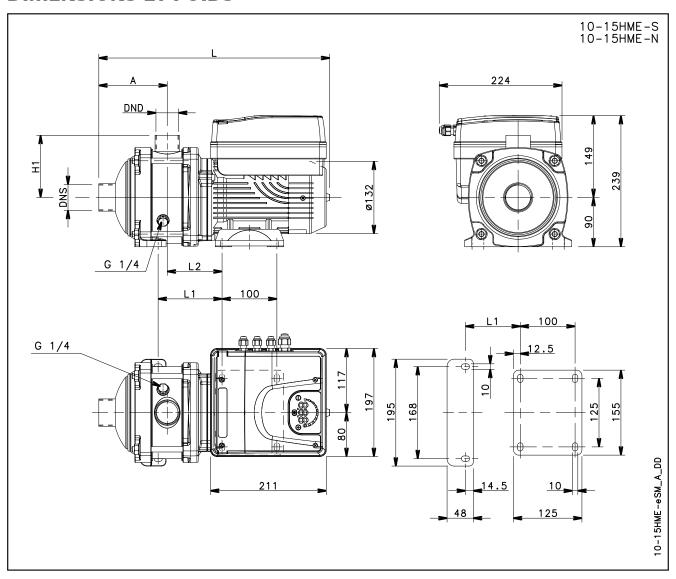
SÉRIES 5HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



SÉRIES 5HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT

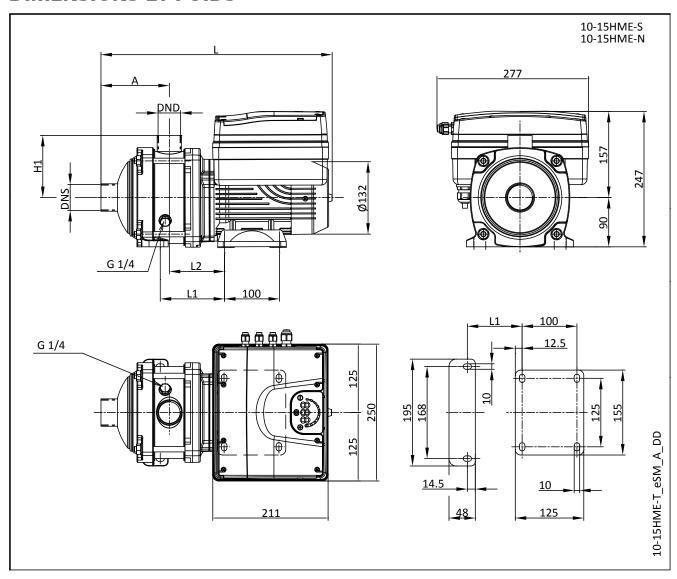


SÉRIES 5HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



SÉRIES 5HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT

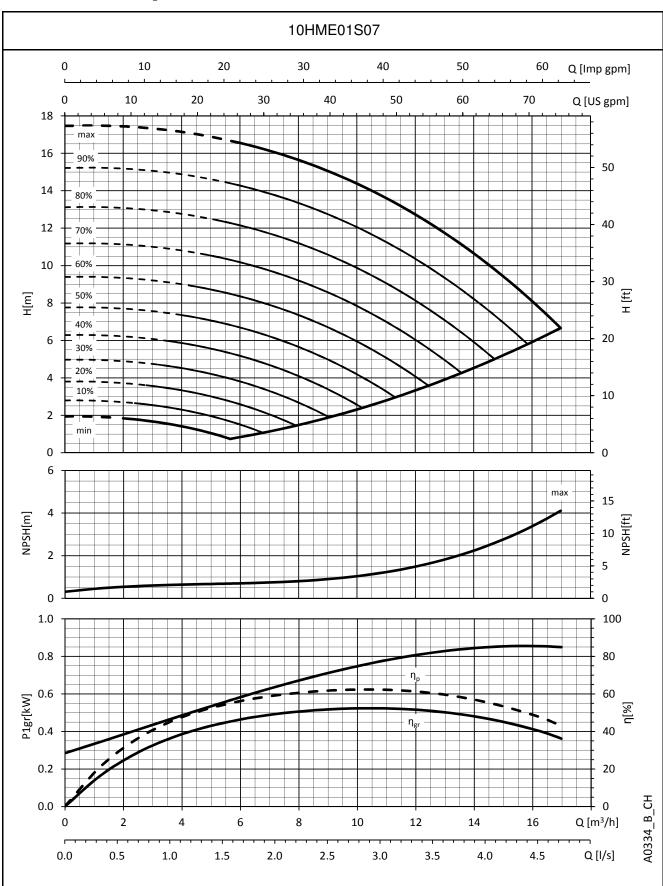
SÉRIE 10, 15HME..S - VERSION MONOPHASÉE DIMENSIONS ET POIDS



TYPE DE POMPE	VERSION	MOT	ΓEUR			DIME	NSIONS (m	m)			PN	POIDS
	ΛE	kW	TAILLE	Α	DND	DNS	H1	L	L1	L2	bar	kg
10HME01S07M02	SÉ	0,75	80	125	Rp 1 1/4	Rp 1 1/2	113	422	116,5	100	10	12
10HME02S11M02	₹	1,1	80	125	Rp 1 1/4	Rp 1 1/2	113	422	116,5	100	10	14
10HME03S15M02	ONOPE	1,5	80	125	Rp 1 1/4	Rp 1 1/2	113	422	116,5	100	10	14
15HME01S11M02	10N	1,1	80	144	Rp 1 1/2	Rp 2	114	457	148,5	116	10	14
15HME02S15M02	Σ	1,5	80	144	Rp 1 1/2	Rp 2	114	457	148,5	116	10	14

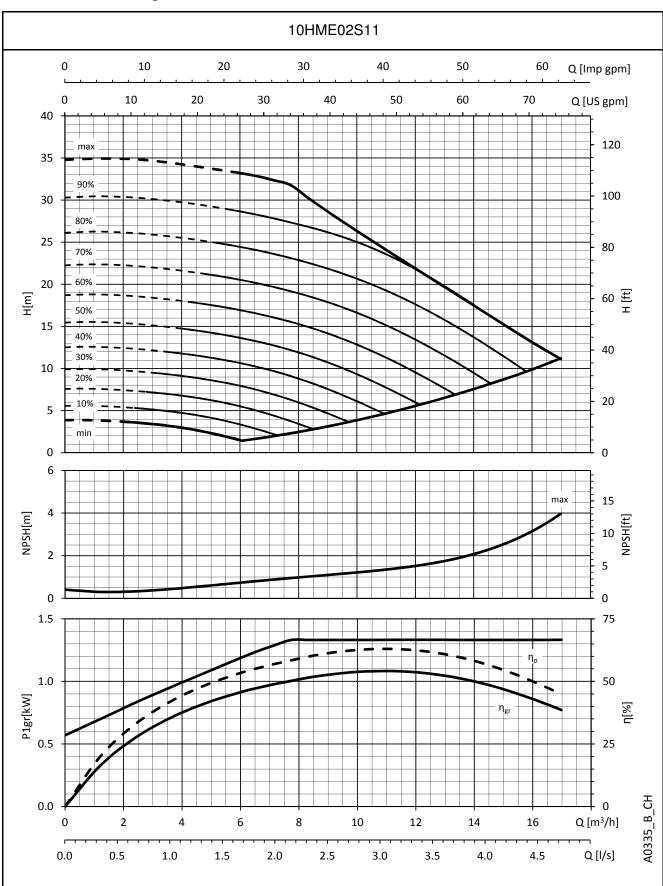
10-15hmes-esm-2p50-fr_a_td

SÉRIES 10, 15HME..S - VERSION TRIPHASÉE DIMENSIONS ET POIDS

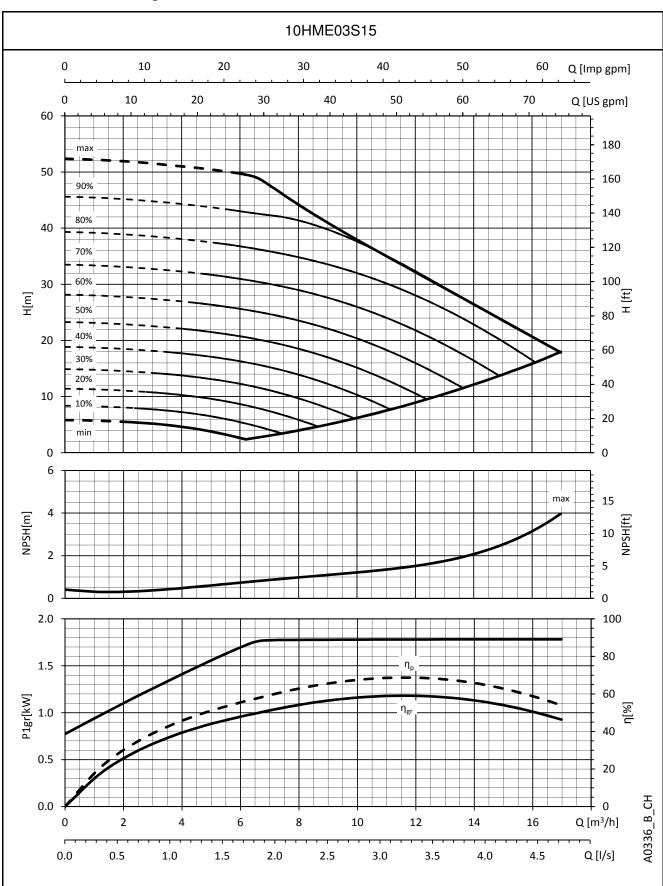


TYPE DE POMPE	VERSION	MO	ΓEUR			DIME	NSIONS (m	m)			PN	POIDS
	3	kW	TAILLE	Α	DND	DNS	H1	L	L1	L2	bar	kg
10HME01S07T05		0,75	80	125	Rp 1 1/4	Rp 1 1/2	113	422	116,5	100	10	18
10HME02S11T05]	1,1	80	125	Rp 1 1/4	Rp 1 1/2	113	422	116,5	100	10	19
10HME03S15T05	ŚÉ	1,5	80	125	Rp 1 1/4	Rp 1 1/2	113	422	116,5	100	10	19
10HME04S22T04	PHA	2,2	80	157	Rp 1 1/4	Rp 1 1/2	113	454	148,5	100	10	22
15HME01S11T05	TR	1,1	80	144	Rp 1 1/2	Rp 2	114	457	148,5	116	10	20
15HME02S15T05		1,5	80	144	Rp 1 1/2	Rp 2	114	457	148,5	116	10	20
15HME03S22T04		2,2	80	144	Rp 1 1/2	Rp 2	114	505	148,5	116	10	22

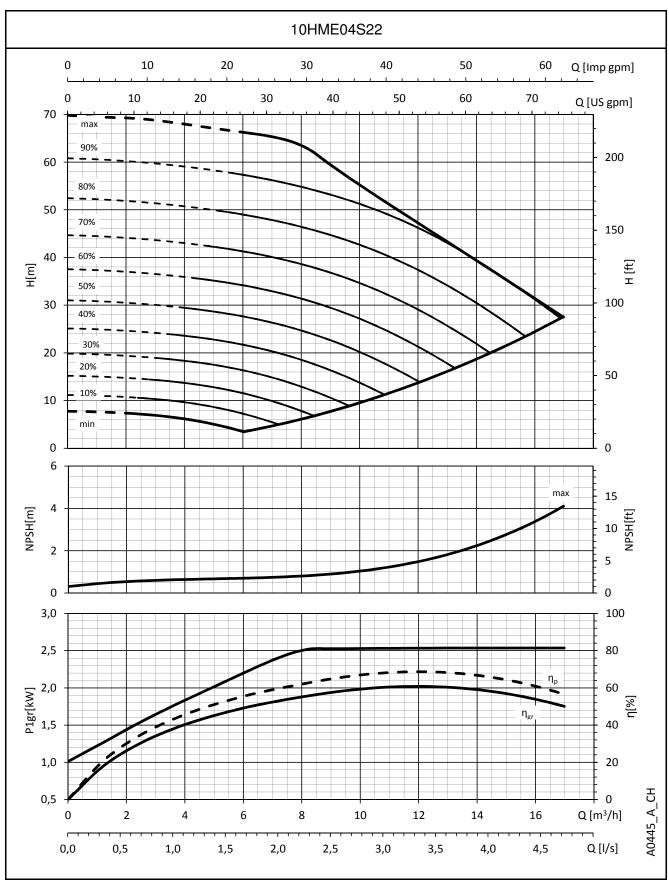
10-15hmes-esm-2p50T-fr_a_td



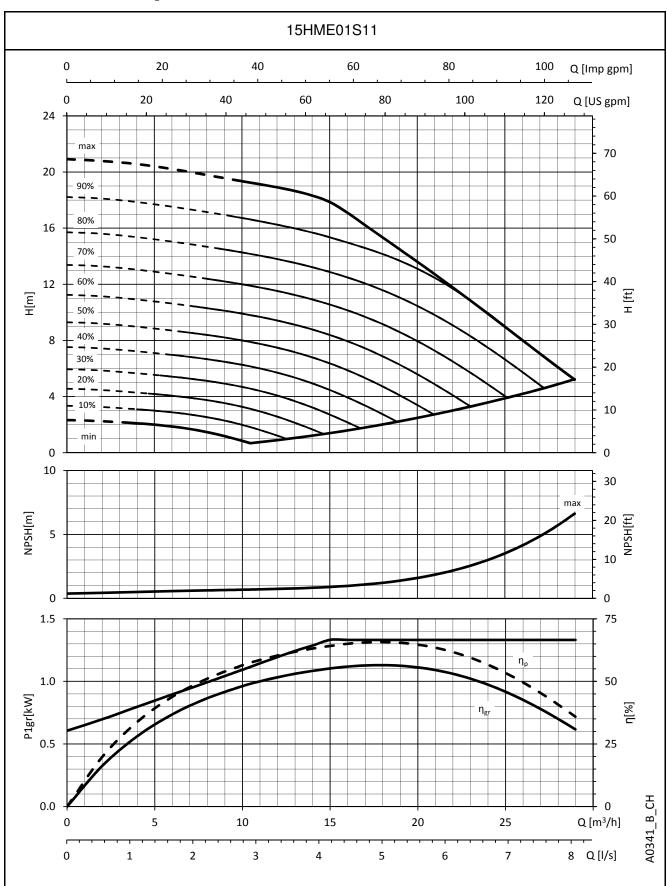
SÉRIES 10HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



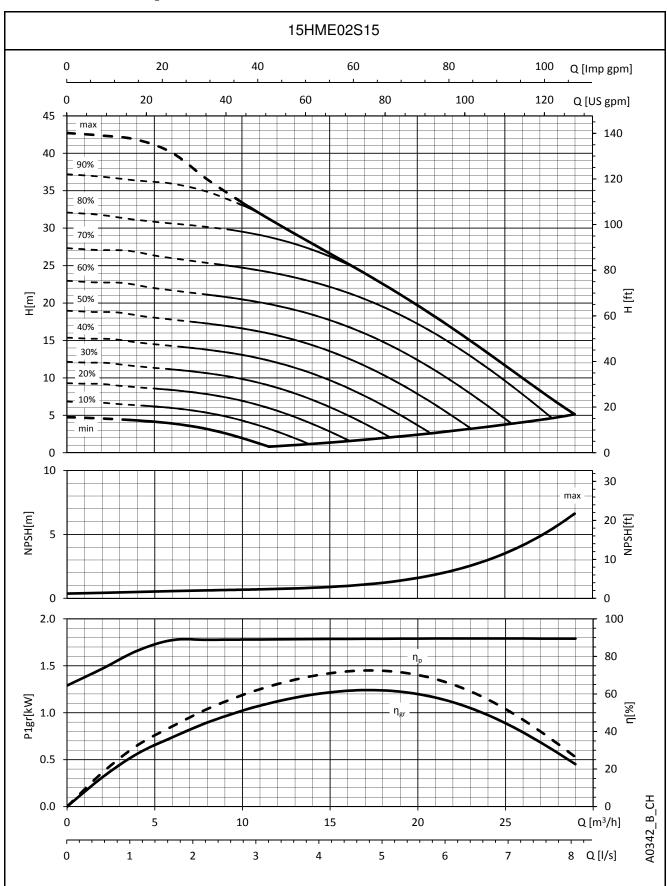
SÉRIES 10HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



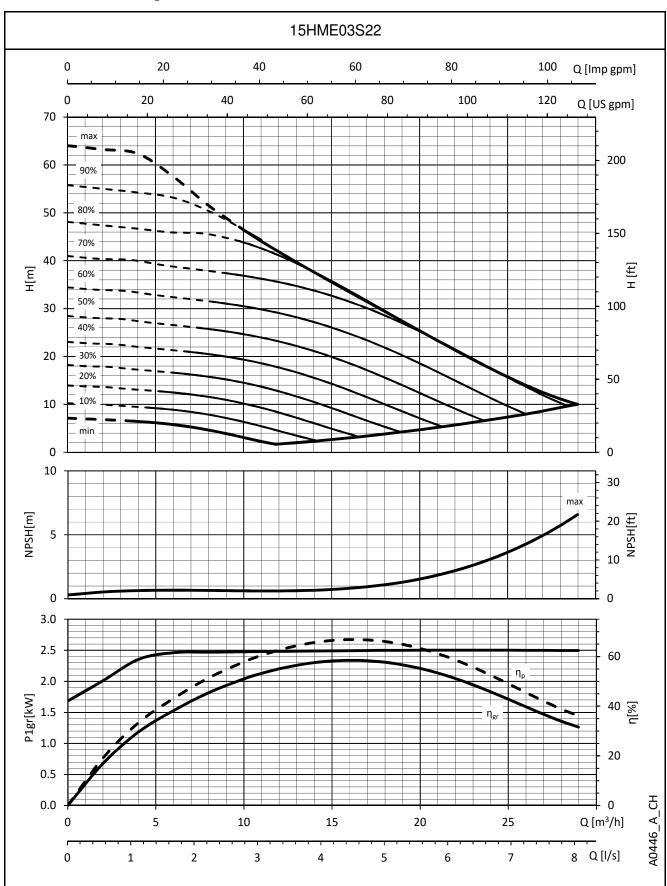
SÉRIES 10HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



SÉRIES 10HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



SÉRIES 15HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT



SÉRIES 15HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT

SÉRIES 15HME..S CARACTÉRISTIQUES DE FONCTIONNEMENT

e-HMX, e-HMK: VERSION AVEC hydrovar X

SÉRIES e-HMX, e-HMK e-HM AVEC hydrovar X

Contexte et informations utiles

Xylem est une entreprise mondiale de premier plan dans le secteur des technologies de l'eau, qui s'est engagée à résoudre les défis liés à l'eau et aux infrastructures grâce à l'innovation. En fournissant des technologies intelligentes et de pointe, nous réduisons la consommation d'énergie au minimum et renforçons la durabilité.

Il existe un point commun entre Xylem et les plus grands innovateurs en ingénierie, c'est l'investissement continu dans de nouveaux produits qui se traduisent par des solutions exceptionnelles.

Vous pouvez trouver toutes ces caractéristiques dans **hydrovar X**, la solution tout-en-un innovation, durabilité et facilité.

hydrovar X apporte également les meilleures performances en matière de rendement énergétique grâce à son convertisseur de fréquence couplé au moteur synchrone ultime, fabriqué par Xylem, caractérisé par des décennies d'expertise et de savoir-faire en matière de solutions de pompage.

Il s'agit de la combinaison gagnante de moteurs, de variateurs de vitesse et de pompes, qui garantit des performances élevées, des économies maximales et un retour sur investissement rapide.

DURABILITÉ

hydrovar X apporte une solution technologique verte en offrant les meilleures performances de sa catégorie. Terres rares ? Non merci ! Xylem a relevé le défi de lutter contre les problèmes de prix, de disponibilité et d'environnement avec une technologie plus intelligente qui offre les meilleures performances de sa catégorie tout en étant écologique.

Facilité d'utilisation et de mise en service

Grâce au logiciel d'application intégré, il s'agit du variateur le plus simple à mettre en marche, programmer et utiliser, permettant pratiquement n'importe quelle configuration des pompes. La rétrocompatibilité assure à **hydrovar X** un fonctionnement sans accroc avec les systèmes existants.

Solution de pompage

Les fonctions de pompe intégrées offrent une protection de la solution de pompage et améliorent la qualité de l'énergie provenant du réseau. Tout cela se traduit par des économies d'énergie considérables grâce à une solution compacte, facile à utiliser et adaptée à presque toutes les applications.

Domaines d'application

- Installations industrielles
- Climatisation
- Systèmes d'alimentation en eau dans les bâtiments résidentiels
- Installations de traitement d'eau

hydrovar X (HMK), hydrovar X+ (HMX)

- Niveau de rendement IES2 (IEC 61800-9-2:2017)
- Alimentation triphasée : de 3 à 5,5 kW : 380-480 V +/- 10%, 50/60 Hz
- Puissance jusqu'à 5,5 kW
- Classe de protection IP 55
- Protection contre les surcharges et protection contre le blocage du rotor avec réinitialisation automatique intégrée
- Liaison possible avec jusqu'à 4 pompes e-HM hydrovar X ou 8 pompes e-HM hydrovar X+

Pompe

- Débit : jusqu'à 34 m³/h
- Hauteur manométrique : jusqu'à 160 m
- Pression de service maximale 16 bar (PN 16)
- Température du liquide pompé : jusqu'à +120°C
- Les performances hydrauliques répondent aux tolérances spécifiées par la norme ISO 9906:2012

Moteur

- Niveau d'efficacité IE5 (IEC TS 60034-30-2:2016)
- Moteur électrique synchrone avec aimants permanents, réluctance assistée, structure fermée, refroidi par air (TEFC)
- Classe d'isolation 155 (F)

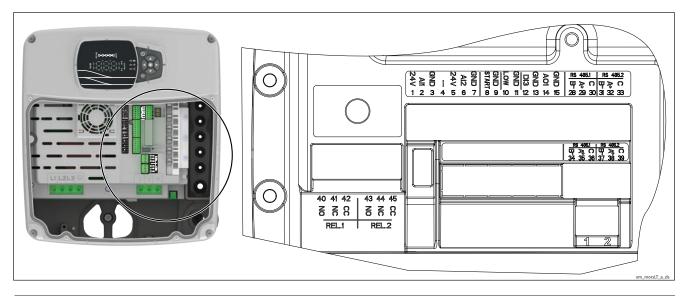
Règlements (EU) 2019/1781 et 2021/341 Annexe I - point 4 (Informations de production)


Les exigences ne s'appliquent pas à ces variateurs de vitesse, car ils sont intégrés dans les moteurs, qui ne sont pas concernés par les mêmes règlements.

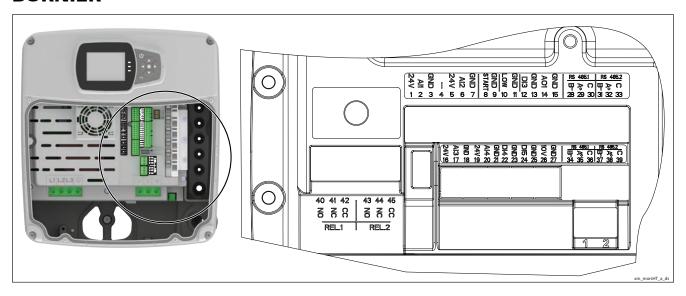
SÉRIES e-HMX, e-HMK e-HM AVEC hydrovar X

hydrovar X offre deux configurations d'affichage différentes : affichage à LED et affichage graphique en couleurs, comme indiqué sur les images ci-après :

hydrovar X (HMK)



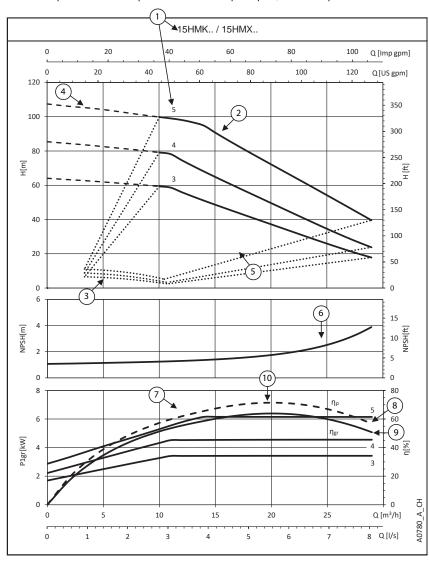
SÉRIES e-HMK (hydrovar X) BORNIER



REP.	COMPOSANT	DESCRIPTION	DÉFAUT				
1		Alimentation +24 VCC, max. 60 mA (total, bornes 1 + 5)					
2	Entrée analogique 1	Entrée analogique configurable 1	Capteur de pression 1				
3		Masse électronique					
4	Non utilisé	Usage interne - Ne pas connecter					
5		Alimentation +24 VCC, max. 60 mA (total, bornes 1 + 5)					
6	Entrée analogique 2	Entrée analogique configurable 2	Non utilisé				
7		Masse électronique					
8	Marche/Arrêt externe	Entrée numérique marche/arrêt, tirage interne +24 VCC, courant de contact 6 mA					
9	iviarche/Arret externe	Masse électronique					
10	Mangue d'eau externe	Entrée numérique faible niveau d'eau, tirage interne +24 VCC, courant de contact 6 mA					
11	ivialique u eau externe	Masse électronique					
12	Entrée numérique 3	Entrée numérique configurable 3, tirage interne +24 VCC, courant de contact 6 mA	Fonctionnement solo				
13	Entree numenque 3	Masse électronique	Fonctionnement solo				
14	Sortie analogique	Sortie analogique configurable	Vitesse du moteur				
15	301 lie arialogique	Masse électronique	vitesse du moteur				
28		RS485, port 1: RS485-1B N (-)					
29	Bus de communication 1	RS485, port 1: RS485-1A P (+)	Multipompes				
30		RS485, port 1: RS485-COM					
31		RS485, port 2 : RS485-2B N (-)					
32	Bus de communication 2	RS485, port 2 : RS485-2A P (+)	Modbus				
33		RS485, port 2: RS485-COM					
34		RS485, port 1: RS485-1B N (-)					
35	Bus de communication 1	RS485, port 1: RS485-1A P (+)	Multipompes				
36		RS485, port 1: RS485-COM					
37		RS485, port 2 : RS485-2B N (-)					
38	Bus de communication 2	RS485, port 2 : RS485-2A P (+)	Modbus				
39		RS485, port 2: RS485-COM					
40		Relais configurable 1 : Normalement ouvert					
41	Relais 1	Relais configurable 1 : Normalement fermé	Erreur				
42		Relais configurable 1 : Contact commun					
43		Relais configurable 2 : Normalement ouvert					
44	Relais 2	· · · · · · · · · · · · · · · · · · ·					
45		Relais configurable 2 : Contact commun					

xm_morsLT-fr_a_sc

SÉRIES e-HMX (hydrovar X+) BORNIER


REP.	COMPOSANT	DESCRIPTION	DÉFAUT
1		Alimentation +24 VCC, max. 60 mA (total, bornes 1 + 5)	Capteur de pression
2	Entrée analogique 1	Entrée analogique configurable 1	Capteur de pression
3		Masse électronique	
4	Non utilisé	Usage interne - Ne pas connecter	
5		Alimentation +24 VCC, max. 60 mA (total, bornes 1 + 5)	
6	Entrée analogique 2	Entrée analogique configurable 2	Non utilisé
7		Masse électronique	
8	Marche/Arrêt externe	Entrée numérique marche/arrêt, tirage interne +24 VCC, courant de contact 6 mA	
9	ivial che/Arret externe	Masse électronique	
10	Manque d'eau externe	Entrée numérique faible niveau d'eau, tirage interne +24 VCC, courant de contact 6 mA	
11	ivialique d'éau externe	Masse électronique	
12	Entrée numérique 3	Entrée numérique configurable 3, tirage interne +24 VCC, courant de contact 6 mA	Fonctionnement solo
13	TETITIEE Hufflerique 3	Masse électronique	FOLICTION HELLIC 2010
14	Sortie analogique	Sortie analogique configurable	Vitesse du moteur
15	- 301 tie analogique	Masse électronique	vitesse du moteur
16		Alimentation +24 VCC, max. 60 mA (total, bornes 16 et 19)	
17	Entrée analogique 3	Entrée analogique configurable 3	Non utilisé
18		Masse électronique	
19		Alimentation +24 VCC, max. 60 mA (total, bornes 16 et 19)	
20	Entrée analogique 4	Entrée analogique configurable 4	Non utilisé
21		Masse électronique	
22	Entrée numérique 4	Entrée numérique configurable 4, tirage interne +24 VCC, courant de contact 6 mA	Non utilisé
23	TETITIEE HUITIEHQUE 4	Masse électronique	Non utilise
24	Entrée numérique 5	Entrée numérique configurable 5, tirage interne +24 VCC, courant de contact 6 mA	Non utilisé
25	Littlee Hullienque 3	Masse électronique	Non duise
26	Alimentation 10 VCC	Alimentation +10 VCC, max. 3 mA	
27	Allinentation to vcc	Masse électronique	
28		RS485, port 1: RS485-1B N (-)	
29	Bus de communication 1	RS485, port 1: RS485-1A P (+)	Multipompes
30		RS485, port 1: RS485-COM	
31		RS485, port 2 : RS485-2B N (-)	
32	Bus de communication 2	RS485, port 2 : RS485-2A P (+)	Modbus
33		RS485, port 2: RS485-COM	
34		RS485, port 1: RS485-1B N (-)	
35	Bus de communication 1	RS485, port 1: RS485-1A P (+)	Multipompes
36		RS485, port 1: RS485-COM	
37		RS485, port 2 : RS485-2B N (-)	
38	Bus de communication 2	RS485, port 2 : RS485-2A P (+)	Modbus
39		RS485, port 2 : RS485-COM	
40		Relais configurable 1 : Normalement ouvert	
41	Relais 1	Relais configurable 1 : Normalement fermé	Fonctionnement
42		Relais configurable 1 : Contact commun	
43		Relais configurable 2 : Normalement ouvert	
44	Relais 2	Relais configurable 2 : Normalement fermé	Erreur
45		Relais configurable 2 : Contact commun	
45		Relais configurable 2 : Contact commun	xm morsHT-fr

xm_morsHT-fr_a_sc

SÉRIES e-HMX, e-HMK COMMENT LIRE LES COURBES DE e-HM AVEC hydrovar X

Afin d'exploiter tout le potentiel de ces pompes, il est important de bien lire les courbes de fonctionnement :

hydrovar X possède une barre « VITESSE » à 5 LED. Chaque LED indique un pourcentage de la vitesse du système entre la vitesse minimale et la vitesse maximale.

hydrovar X+

Pour une précision maximale du point de fonctionnement, il suffit de lire l'affichage.

- 6 NPSH (Net Positive Suction Head) : soit la charge nette absolue à l'aspiration du système pompe+moteur+variateur fonctionnant à la vitesse maximale.
- (7) **P1**_{gr}: puissance absorbée en kW du système pompe+moteur+variateur fonctionnant à la vitesse maximale. La courbe augmente jusqu'à ce que l'unité

atteigne la limite de puissance.

hydrovar X contrôle la consommation d'énergie (la partie plate de la courbe) à un débit élevé/une hauteur manométrique basse. Cela garantit la protection du moteur contre les surcharges et assure une durée de vie plus longue du système pompe+moteur+variateur.

- (8) **η**_p : rendement de la partie hydraulique fonctionnant à la vitesse maximale.
- (9) η_{gr} : rendement du système pompe + moteur + variateur fonctionnant à la vitesse maximale.
- (II) Point de fonctionnement : il est important d'utiliser la pompe à son meilleur point de fonctionnement, celui qui assure le meilleur rendement. Il est facile à trouver puisque c'est le plus haut point de la courbe de rendement de la pompe ηp; après l'avoir trouvé, vous pouvez aussi repérer les valeurs de débit (Q) sur l'axe X et les valeurs de hauteur manométrique (H) sur l'axe Y, qui permettent au système de tourner au meilleur point de fonctionnement.

1 Modèle de la pompe et nombre d'étages

- (2) **Courbe maximale** (100 %): correspond à 3 600 tr/min ou au fonctionnement de la pompe à la puissance nominale
- 3 **Courbe minimale** (0%) : vitesse minimale de rotation possible du moteur, calculée selon le modèle de la pompe en maximisant la zone de fonctionnement de chaque groupe de surpression et en permettant au système d'être le plus flexible possible.
- 4 La **zone dans les lignes pointillées** correspond à la zone dans laquelle la pompe ne peut fonctionner que de façon intermittente pendant de courtes périodes.
- (5) La **plage de fonctionnement autorisée** (AOR, allowable operating range) de la pompe est définie par les courbes de capacité de hauteur manométrique minimale et maximale ainsi que par les débits minimal et maximal à une vitesse donnée.

SÉRIES e-HMX, e-HMK TABLEAU PERFORMANCES HYDRAULIQUES

TYPE DE		MOTEUR				Q = I	DEBIT			
POMPE			l/min 0	26,7	53,3	80,0	106,7	133,3	160,0	170,0
svx	P_N	TYPE	m³/h 0	1,6	3,2	4,8	6,4	8,0	9,6	10,2
SVK	kW			H =	HAUTEUR I	MANOMÉT	RIQUE TOTA	ALE EN MÈ	TRES	
5HM14	3	EXM90HMHB/030B	155,2	156,8	152,3	144,2	119,1	93,2	66,6	56,4

TYPE DE		MOTEUR				Q = I	DEBIT			
POMPE			l/min 0	43,3	86,7	130,0	173,3	216,7	260,0	283,3
svx	P _N	TYPE	m³/h 0	2,6	5,2	7,8	10,4	13,0	15,6	17,0
SVK	kW			H =	HAUTEUR I	MANOMÉT	RIQUE TOTA	ALE EN MÈ	TRES	
10HM06	3	EXM90HMHC/030B	104,7	103,4	100,7	89,7	73,6	58,7	43,7	35,6
10HM08	4	EXM100HMHC/040B	139,6	137,9	134,3	119,6	98,1	78,2	58,2	47,4
10HM09	5,5	EXM112HMHC/055B	160,2	157,8	154,4	148,6	134,3	109,9	86,7	74,3

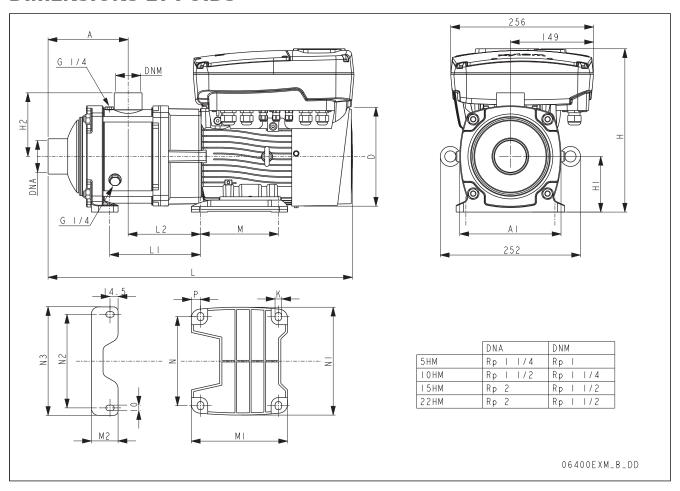
TYPE DE		MOTEUR				Q = I	DEBIT			
POMPE			l/min 0	70,0	140,0	210,0	280,0	350,0	420,0	483,3
svx	P _N	TYPE	m³/h 0	4,2	8,4	12,6	16,8	21,0	25,2	29,0
SVK	kW			H =	HAUTEUR I	MANOMÉT	RIQUE TOTA	ALE EN MÈ	TRES	
15HM03	3	EXM90HMHC/030B	64,0	62,3	60,3	54,5	44,5	35,0	25,5	17,8
15HM04	4	EXM100HMHC/040B	85,4	83,1	80,4	72,7	59,4	46,6	34,0	23,7
15HM05	5,5	EXM112HMHC/055B	107,4	104,8	101,1	97,3	83,9	68,6	53,5	39,5

TYPE DE		MOTEUR	Q = DEBIT										
POMPE			l/min 0	83,3	166,7	250,0	333,3	416,7	500,0	566,7			
svx	P_N	TYPE	m³/h 0	5,0	10,0	15,0	20,0	25,0	30,0	34,0			
SVK	kW		'	H =	HAUTEUR I	MANOMÉT	RIQUE TOTA	ALE EN MÈ	TRES				
22HM02	3	EXM90HMHC/030B	44,5	44,4	43,2	41,6	36,8	28,7	19,5	11,4			
22HM03	4	EXM100HMHC/040B	67,5	66,2	64,7	61,8	50,4	38,7	27,5	18,9			
22HM04	5,5	EXM112HMHC/055B	89,8	89,3	86,6	84,1	71,4	57,3	42,3	29,5			

hmx-hmk-fr_a_th

hydrovar X, hydrovar X+ TABLEAU DES CARACTÉRISTIQUES ÉLECTRIQUES

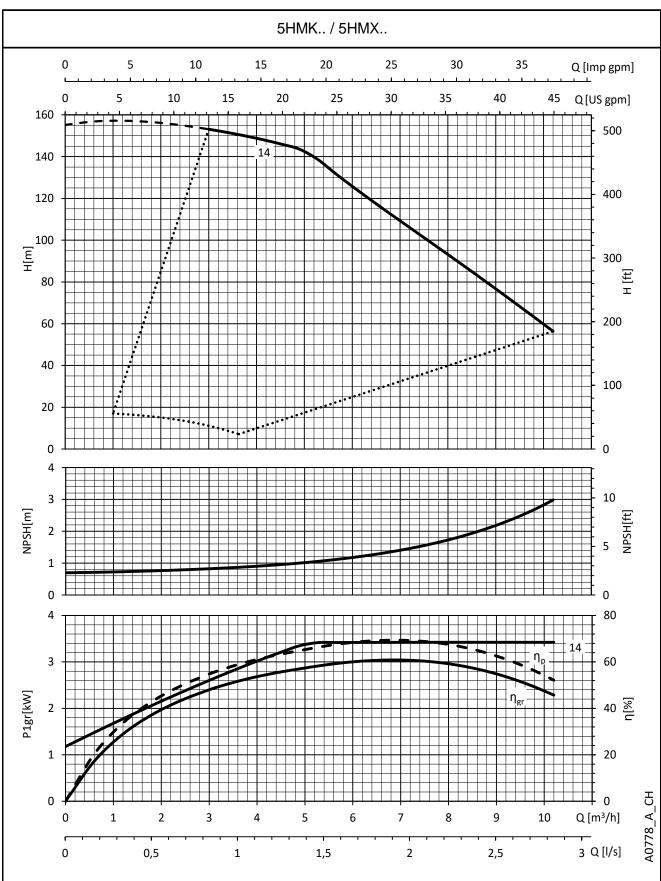
La puissance nominale du moteur est garantie dans la plage 3 000-3 600 tr/min. Le moteur est automatiquement limité à un maximum de 3 600 tr/min ; le moteur fonctionne à charge partielle en dessous de 3 000 tr/min.


P _N		IEC*	de tion	VITESSE	COURANT D'ENTRÉE	DOI	NNÉES R	ELATIVES	À UNE	TENSION	DE 400	V
FN	TYPE DE MOTEUR		a. 0	(TR/MIN)**	I (A)	In	cosφ	Tn		η %		IES
kW		TAILLE	Fo	min ⁻¹	380-480 V	Α		Nm	4/4	3/4	2/4	
	EXM90HMHB/4.030B			3000		5,79		9,55	87,5	87,3	86,2	
3	EXM90HMHC/4.030B	100		3600	6,74-5,18	5,71	0,86	7,96	87,8	87,6	85,8	2
	EXIVISOR IIVII 1Q 4.030B			4000		5,72		7,16	87,7	87,4	85,5	
			۸L	3000		7,34		12,7	87,5	88,0	87,5	
4	EXM100HMHC/4.040B	112	SPECIAL	3600	7,73-6,42	7,23	0,90	10,6	88,5	88,6	87,3	2
			SPI	4000		7,30		9,55	88,0	88,2	86,6	
				3000		9,51		17,5	90,0	89,7	88,9	
5,5	EXM112HMHC/4.055B	132		3600	10,1-8,22	9,63	0,92	14,6	89,4	89,5	88,7	2
				4000				13,1	89,5	89,0	87,6	

^{**} Les vitesses de rotation indiquées représentent les limites supérieures et inférieures de la plage de vitesses de fonctionnement à la puissance nominale. HM-XM_mott-fr_a_te

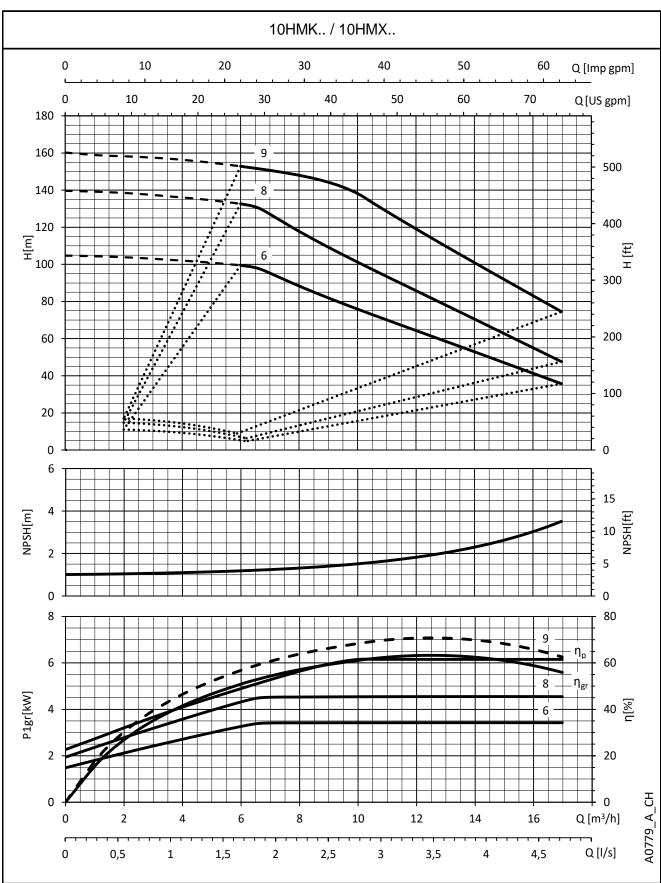
Remarque : **IES** désigne la classe d'efficacité des systèmes convertisseur + moteur (appelés systèmes de transmission de puissance-PDS) d'une puissance comprise entre 0,12 kW et 1000 kW et entre 100 V et 1000 V, conformément à la norme **EN 50598-2:2014**.

SÉRIES e-HMX, e-HMK DIMENSIONS ET POIDS

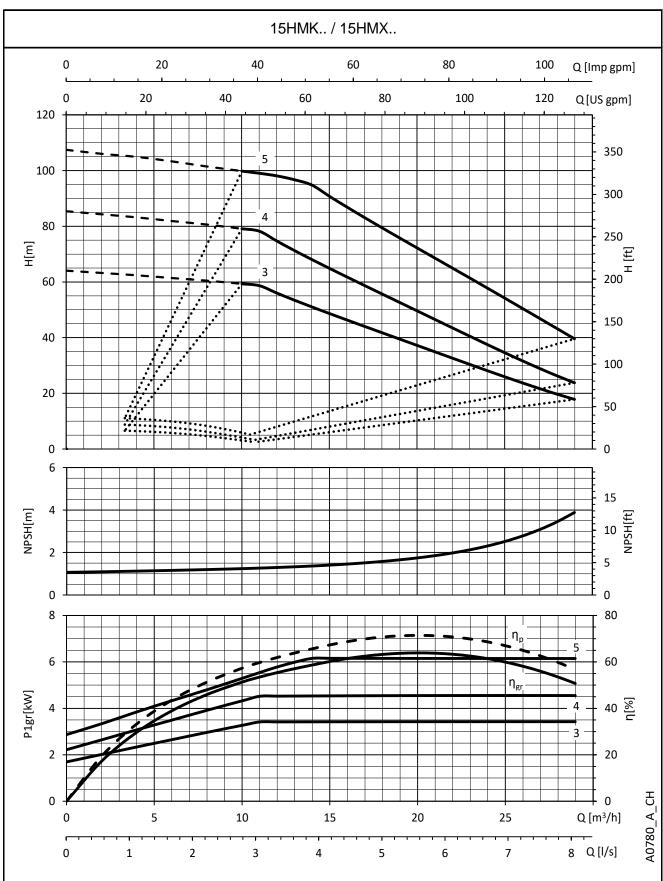


TYPE DE POMPE	MO	TEUR								DIN	MENSIC	ONS (m	m)									POIDS
нмх, нмк	kW	Taille	Α	A1	н	H1	Н2	D	L	L1	L2	М	М1	M2	N	N1	N2	N3	Р	K	PN	(kg)
5HM14	3	В	358	146	284	90	94	174	746	375	121	125	156	45	140	174	140	165	16	10	16	32,4
10HM06	3	В	221	182	284	90	113	174	610	234	122	125	156	48	140	174	168	195	16	10	16	33,4
10HM08	4	В	285	182	294	100	113	174	674	290	114	140	173	48	160	194	168	195	17	12	16	35,4
10HM09	5,5	В	317	182	306	112	113	197	706	330	121	140	177	48	190	230	168	195	8,5	12	16	36,4
15HM03	3	В	144	182	284	90	114	174	549	170	138	125	156	48	140	174	168	195	16	10	10	30,4
15HM04	4	В	192	182	294	100	114	174	597	210	130	140	173	48	160	194	168	195	17	12	10	31,4
15HM05	5,5	В	240	182	306	112	114	197	645	266	137	140	177	48	190	230	168	195	8,5	12	16	33,4
22HM02	3	В	144	182	284	90	114	174	549	170	138	125	156	48	140	174	168	195	16	10	10	30,4
22HM03	4	В	144	182	294	100	114	174	549	162	130	140	173	48	160	194	168	195	17	12	10	30,4
22HM04	5,5	В	192	182	306	112	114	197	597	218	137	140	177	48	190	230	168	195	8,5	12	10	31,4

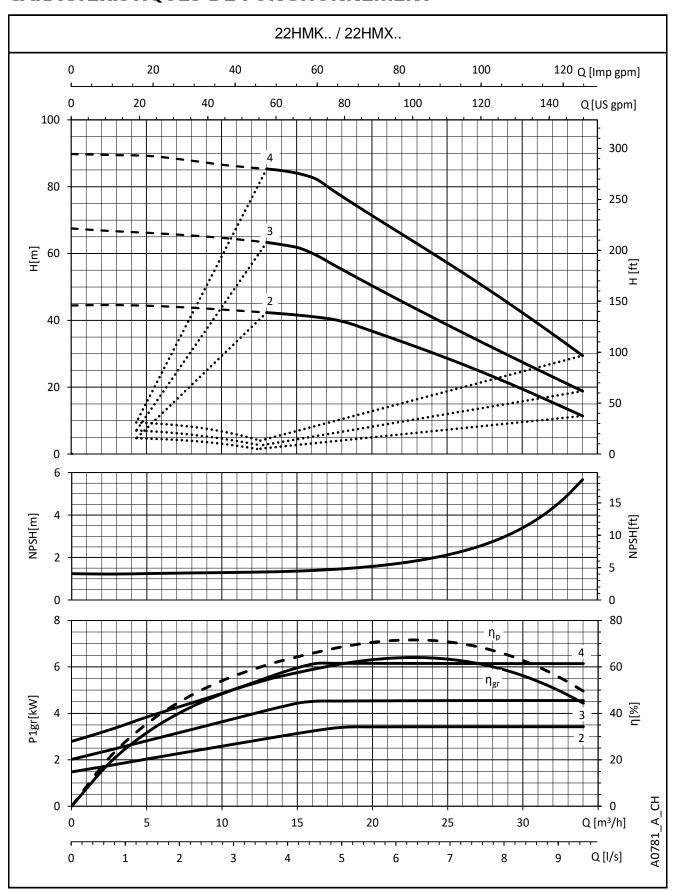
hmx-fr_a_td



SÉRIES e-HMX, e-HMK CARACTÉRISTIQUES DE FONCTIONNEMENT



SÉRIES e-HMX, e-HMK CARACTÉRISTIQUES DE FONCTIONNEMENT


SÉRIES e-HMX, e-HMK CARACTÉRISTIQUES DE FONCTIONNEMENT

SÉRIES e-HMX, e-HMK CARACTÉRISTIQUES DE FONCTIONNEMENT

a **xylem** brand

e-HMH: VERSION AVEC HYDROVAR HVL

SÉRIES e-HMH e- HM AVEC HYDROVAR HVL

Contexte et informations utiles

En ce qui concerne les besoins de pompes dans le domaine de la construction commerciale et résidentielle ainsi que dans les applications industrielles, la demande de systèmes de pompage intelligents est en constante augmentation. Les systèmes à commande offrent de nombreux avantages : réduction des coûts du cycle de vie de la pompe, faible impact environnemental, plus longue durée de vie des tuyaux et des jonctions.

C'est pour cette raison que Lowara a développé le modèle HMH : un système de pompage intelligent qui assure des performances de haut niveau avec une consommation d'énergie adaptée à la demande.

Avantages du e-HM avec HYDROVAR

Économies: le modèle e-HMH transforme les pompes e-HM en systèmes de pompage à vitesse variable intelligents. Grâce au système HYDROVAR, la vitesse de chaque pompe varie de façon à maintenir à un niveau constant le débit, la pression ou la pression différentielle. De cette façon, à n'importe quel moment, la pompe reçoit uniquement l'énergie nécessaire. Ce qui permet ainsi de réaliser des économies considérables, en particulier pour les systèmes où les demandes varient pendant la journée.

Installation aisée et faible encombrement :

le modèle e-HMH fait gagner du temps et de la place durant l'installation. L'Hydrovar est fourni déjà monté sur le moteur. Il est refroidi par le ventilateur du moteur et il n'a pas besoin d'un panneau de commande. Pour le fonctionnement il a besoin seulement de fusibles sur la ligne d'alimentation (en fonction des règles d'installation électrique locales).

Moteurs standard : les modèles e-HMH sont équipés de moteurs triphasés TEFC standard avec classe d'isolation 155 (F).

Code d'identification :

les modèles e-HMH sont identifiés par la lettre « **H** » et les deux derniers caractères :

H = avec HYDROVAR intégré

/2 = HYDROVAR HVL**2**.015 1~ 208-240 V (50/60 Hz)

/3 = HYDROVAR HVL3.015 3~ 208-240 V (50/60 Hz)

/4 = HYDROVAR HVL4.015 3~ 380-460 V (50/60 Hz).

Autres options:

C = Premium Card.

Exemples:

3HM**H**16S15T5RVBE**/2** 3HM**H**16S15T5RVBE**/3** 3HM**H**16S15T5RVBE**/4C**

Caractéristiques clé de l'HYDROVAR

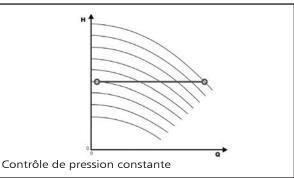
 Aucune capteur de pression supplémentaire n'est requis :

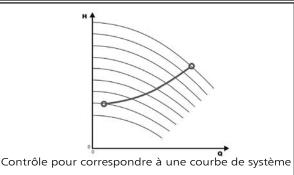
L'e-HMH est fournie de série avec un transmetteur de pression.

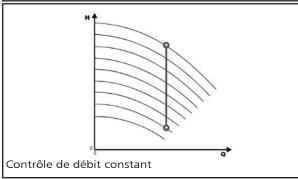
- Pas nécessaire pour les pompes ou les moteurs spéciaux.
- Le e-HMH est fourni pré-câblé.
- Pas besoin de systèmes de by-pass ou de sécurité : Les modèles e-HMH s'arrêtent immédiatement lorsque la demande tombe à zéro ou si elle dépasse la capacité maximale de la pompe ; l'installation de dispositifs de sécurité supplémentaires est donc inutile.
- Dispositif anti-condensation :

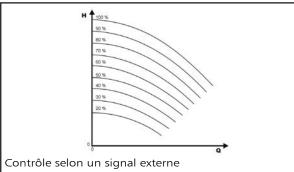
Les modèles HYDROVAR sont munis de dispositifs anticondensation qui commutent lorsque la pompe est en mode veille, afin d'éviter la formation de condensation dans l'unité.

SÉRIES e-HMH e- HM AVEC HYDROVAR HVL


La fonction de base du dispositif HYDROVAR est de contrôler la pompe afin de répondre aux exigences du système.


HYDROVAR remplit ces fonctions en :


- 1) Mesurant la pression ou le débit du système via un émetteur installé sur le côté refoulement de la pompe.
- 2) Calculant la vitesse du moteur pour maintenir le débit ou la pression correcte.
- 3) Envoyant un signal à la pompe pour démarrer le moteur, augmenter la vitesse, diminuer la vitesse ou l'arrêter.
- 4) Dans le cas d'installations avec plusieurs pompes, HYDROVAR s'occupera automatiquement du changement cyclique de la séquence de démarrage des pompes.


En plus de ces fonctions de base, HYDROVAR peut en accomplir d'autres uniquement à l'aide de systèmes de contrôle gérés par ordinateur très pointus. Voici quelques exemples :

- Arrêter la(les) pompe(s) lorsque la demande tombe à zéro.
- Arrêter la(les) pompe(s) en cas d'absence d'eau côté d'aspiration (protection contre marche à sec).
- Arrêter la pompe si la distribution requise dépasse la capacité de la pompe (protection contre la cavitation causée par une demande excessive), ou basculer automatiquement sur la prochaine pompe en cas de pompes en série.
- Protéger la pompe et le moteur contre les risques de surtension, sous tension, surcharge et défaut à la terre.
- Varier l'accélération de la vitesse de la pompe et du temps de décélération.
- Compenser en cas de résistance à l'écoulement accrue à des débits élevés.
- Exécuter des tests automatiques de conduite à intervalles réguliers.
- Surveiller le convertisseur et les heures de fonctionnement du moteur.
- Afficher la consommation d'énergie (kWh).
- Afficher toutes les fonctions sur un écran LCD dans différentes langues (italien, anglais, français, allemand, espagnol, portugais, néerlandais, etc.).
- Envoyer un signal à un système de commande à distance qui est proportionnel à la pression et à la fréquence.
- Communiquer avec des systèmes de commande externes via Modbus (interface RS 485) et BACnet de série.

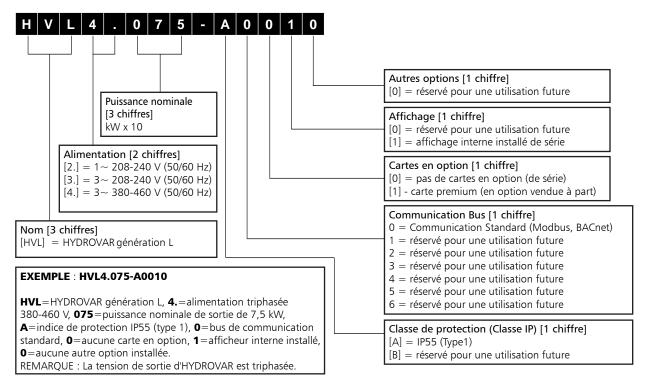
SÉRIES e-HMH HYDROVAR (ErP 2009/125/EC)

À partir du 1er juillet 2021, conformément aux nouveaux **règlements (UE) 2019/1781** et **2021/341**, les **variateurs de vitesse** à **courant d'entrée/sortie triphasé**, de tension nominale comprise entre **100 V** et **1000 V**, prévus pour fonctionner avec des moteurs inclus dans le même règlement (**0,12 - 1000 kW**), doivent avoir le niveau de rendement **IE2**.

Les tableaux ci-dessous indiquent également les informations impératives conformément à l'Annexe I, section 4, des règlements.

							Pertes de p	uissance (PL) avec fréqu	ence 10 KHz	:				
								%	Pa						
PN	Phase	UNin	Pa				(% vitess	e nominale	; % couple	nominal)					
kW		V	kVA	stand-by	0;25	0;50	0;100	50;25	50;50	50;100	90;50	90;100	IE		
1,5															
2,2	~1	208-240					non comr	ris dans le	rèalement						
3	'	200 240					non comp	ins duns ic	regierrierre						
4															
1,5			2,45	0,4%	1,3%	1,6%	1,9%	1,4%	1,7%	2,5%	2,0%	3,1%			
2,2			3,46	0,3%	1,3%	1,6%	2,4%	1,4%	1,8%	2,7%	2,0%	3,3%			
3			5,15	0,2%	1,1%	1,4%	2,2%	1,3%	1,7%	2,6%	1,9%	3,2%			
4		208-240	6,00	0,2%	1,1%	1,3%	2,1%	1,3%	1,6%	2,5%	1,9%	3,1%			
5,5			7,90	0,1%	0,9%	1,1%	1,8%	1,0%	1,4%	2,4%	1,7%	3,2%			
7,5			10,1	0,1%	0,7%	0,9%	1,5%	0,8%	1,1%	2,1%	1,4%	3,1%			
11			15,1	0,1%	0,7%	0,9%	1,7%	0,8%	1,2%	2,3%	1,4%	3,0%			
1,5			2,56	0,4%	1,2%	1,5%	1,8%	1,3%	1,6%	2,1%	1,6%	2,3%			
2,2	~3		3,67	0,3%	1,2%	1,3%	1,7%	1,3%	1,5%	2,1%	1,6%	2,3%	2		
3		380-460	380-460		5,00	0,2%	1,1%	1,1%	1,5%	1,2%	1,4%	2,1%	1,5%	2,2%	
4					6,20	0,2%	1,0%	0,9%	1,4%	1,1%	1,4%	2,0%	1,4%	2,2%	
5,5				8,30	0,2%	0,8%	0,8%	1,3%	0,9%	1,2%	1,9%	1,3%	2,2%		
7,5			10,7	0,1%	0,7%	0,6%	1,2%	0,7%	1,0%	1,8%	1,2%	2,3%			
11			15,9	0,1%	0,6%	0,6%	1,2%	0,7%	1,0%	1,8%	1,2%	2,2%			
15			21,5	0,1%	0,5%	0,6%	1,2%	0,6%	0,9%	1,6%	1,1%	2,0%			
18,5			25,6	0,1%	0,5%	0,6%	1,2%	0,6%	0,8%	1,6%	1,0%	1,9%			
22			29,4	0,0%	0,5%	0,7%	1,3%	0,6%	0,9%	1,6%	1,0%	2,1%			

hvl-pl-fr_a_te


			Fabricant						Condition	s de fonction	nement *
			Xylem Service Italia Srl Reg. No. 07520560967		I _{Nin}			I _{nout}	Altitude	T.amb	
P _N	~	U _{Nin}	Montecchio Maggiore (VI) - Italie	f_{Nin}	max	\mathbf{U}_{nout}	f _{Nout}	max	asl	min/max	ATEX
kW		V	Modèle	Hz	Α	V	Hz	Α	m	°C	
1,5			HVL 2.015		11,6			7,5			
2,2	1	208-240	HVL 2.022		1			15,1			
3	'	200-240	HVL 2.030		22,3			14,3			
4			HVL 2.040		27,6			16,7			
1,5			HVL 3.015		7			7,5			
2,2			HVL 3.022		9,1			10			
3			HVL 3.030		13,3			14,3			
4		208-240	HVL 3.040		16,5			16,7			
5,5			HVL 3.055		23,5			24,2			
7,5			HVL 3.075		29,6	0-100%		31			
11			HVL 3.110	50/60	3	U _{Nin}	15-70	43,9	≤1000	-15/40	No
1,5			HVL 4.015		3,9	O _{Nin}		4,1			
2,2	3		HVL 4.022		5,3			5,7			
3			HVL 4.030		7,2			7,3			
4			HVL 4.040		10,1			10			
5,5		380-460	HVL 4.055		12,8			13,5			
7,5		300-400	HVL 4.075		16,9			17			
11			HVL 4.110		24,2			24			
15			HVL 4.150		33,3			32			
18,5			HVL 4.185		38,1			38			
22			HVL 4.220		44,7			44			

^{*}jusqu'à 2000 mètres ou maximum 55°C en réduisant la puissance fournie

hvl-fr_b_te

HYDROVAR HVL CODE D'IDENTIFICATION

DIMENSIONS ET POIDS

TYPE	MODÈLES			DIMENSIONS (mm)				POIDS
	/2	/3	/4	L	В	Н	х	Kg
TAILLE A	HVL2.015 ÷ 2.022	HVL3.015 ÷ 3.022	HVL4.015 ÷ 4.040	216	205	170	243	5,6
TAILLE B	HVL2.030 ÷ 2.040	HVL3.030 ÷ 3.055	HVL4.055 ÷ 4.110	276	265	185	305	10,5
TAILLE C	-	HVL3.075 ÷ 3.110	HVL4.150 ÷ 4.220	366	337	200	407	15,6

 $HVL_dim-fr_b_td$

HYDROVAR HVL COMPATIBILITÉ EMC

Exigences EMC

HYDROVAR est conforme à la norme produit EN61800-3:2004+A1:2012, qui définit des catégories (C1-C4) liées aux domaines d'application.

En fonction de la longueur du câble du moteur, un classement d'HYDROVAR par catégorie (selon EN61800-3) est indiqué dans les tableaux suivants :

HVL	Classement HYDROVAR par catégories selon EN61800-3			
2,015 ÷ 2,040	C1 (*)			
3,015 ÷ 3,110	C2 (*)			
4,015 ÷ 4,220	C2 (*)			

^(*) longueur du câble du moteur 0,75, contacter Xylem pour plus d'informations

Fr-Rev_A

CARTE

Carte premium HYDROVAR (en option)

Pour la gamme e-HMH, il est possible d'installer une Carte Premium en option à installer dans l'HYDROVAR.

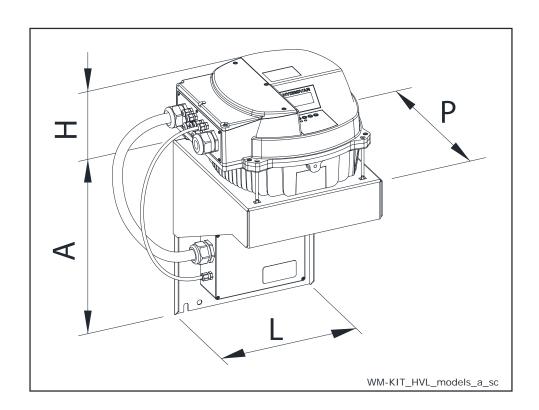
Cela permet de contrôler jusqu'à cinq pompes à vitesse fixe via un coffret externe.

La carte premium permet les fonctionnalités supplémentaires suivantes :

- 2 entrées analogiques supplémentaires
- 2 sorties analogiques
- 1 entrée numérique supplémentaire
- 5 relais.

COMPOSANTS EN OPTION

Capteurs


Les capteurs suivants sont disponibles pour HYDROVAR :

- a. Transducteur de pression
- b. Transducteur de pression différentiel
- c. Capteur de température
- d. Indicateur de débit (orifice, débitmètre inductif)
- e. Capteur de niveau.

HYDROVAR HVL (KIT DE MONTAGE MURAL) DIMENSIONS ET POIDS

En option, un kit de montage mural HYDROVAR est également disponible. Il est utilisé si le montage sur le groupe motopompe est impossible ou pour avoir les commandes ailleurs. Il est disponible pour la nouvelle génération HYDROVAR HVL 2.015-4.220 (22 kW). La vitesse du ventilateur de refroidissement est régulée par le variateur HYDROVAR, ce qui optimise la consommation d'énergie et réduit le bruit.

TYPE DE KIT WM	kW	ALIMENTATION	TAILLE		DIMENSIC	NS (mm)		POIDS (kg)	
TIPE DE KIT WIVI	KVV	DU KIT WM	HVL	Α	Н	L	Р	HVL	KIT WM
WM KIT HVL 2.015	1,5		А	220	170	202	232	5,6	2,6
WM KIT HVL 2.022	2,2	1~ 230V	A	220	170	202	232	5,6	2,6
WM KIT HVL 2.030	3	1 2300	В	240	175	258	290	10,5	8,2
WM KIT HVL 2.040	4		D	320	175	288	305	10,5	5,4
WM KIT HVL 3.015	1,5		А	220	170	202	232	5,6	2,6
WM KIT HVL 3.022	2,2		A	220	170	202	232	5,6	2,6
WM KIT HVL 3.030	3		В	240	175	258	290	10,5	8,2
WM KIT HVL 3.040	4	3∼ 230V		240	175	258	290	10,5	8,2
WM KIT HVL 3.055	5,5			240	175	258	290	10,5	8,2
WM KIT HVL 3.075	7,5		С	400	200	325	365	15,6	11,6
WM KIT HVL 3.110	11			400	200	325	365	15,6	11,6
WM KIT HVL 4.015	1,5		А	240	170	258	290	5,6	8,2
WM KIT HVL 4.022	2,2			240	170	258	290	5,6	8,2
WM KIT HVL 4.030	3			240	170	258	290	5,6	8,2
WM KIT HVL 4.040	4			240	170	258	290	5,6	8,2
WM KIT HVL 4.055	5,5	3∼ 400V		240	175	258	290	10,5	8,2
WM KIT HVL 4.075	7,5	3∼ 400V	В	240	175	258	290	10,5	8,2
WM KIT HVL 4.110	11			320	175	288	305	10,5	5,4
WM KIT HVL 4.150	15			400	200	325	365	15,6	11,6
WM KIT HVL 4.185	18,5		С	400	200	325	365	15,6	11,6
WM KIT HVL 4.220	22			400	200	325	365	15,6	11,6

WM-KIT_HVL_models-FR_b_td

RAPPORTS ET DÉCLARATIONS

RAPPORTS ET DÉCLARATIONS

1) Procès-verbal d'essai

a) Rapport d'essai en usine (code d'identification Lowara : 1A)

(pas disponible pour tous les types de pompes ; contacter le Service Clients à l'avance)

- apport d'essai établi à la fin de la ligne d'assemblage, y compris le test de performance débit-hauteur manométrique (ISO 9906:2012 - Classe 3B) et essai d'étanchéité.

b) **Rapport test d'audit** (code d'identification Lowara : 1B)

- Rapport d'essai pour les électropompes dressé dans la salle d'essai, incluant l'essai de débit- hauteur manométrique-pression d'entrée-rendement et performance de la pompe (ISO 9906:2012 - Classe 3B)

c) Rapport d'essai NPSH (code d'identification Lowara : 1B / CTF-NP)

(pas disponible pour les pompes immergées ou submersibles)

- Rapport d'essai pour les électropompes dressé dans la salle d'essai, incluant l'essai de débit- performance NPSH (ISO 9906:2012 - Classe 3B)

d) Rapport d'essai de bruit (code d'identification Lowara : 1B / CTF-RM)

(pas disponible pour les pompes immergées)

- Rapport indiquant la pression sonore et les mesures de puissance (EN ISO 20361, EN ISO 11203, EN ISO 4871) en utilisant la méthode
 - intensimétrique (EN ISO 9614-1, EN ISO 9614-2) ou
 - phonométrique.

e) Rapport essai de vibrations

(pas disponible pour les pompes immergées ou submersibles)

- Rapport indiquant les mesures de vibrations (ISO 10816-1)

Déclaration de conformité du produit aux exigences techniques indiquées dans la commande

a) EN 10204:2004 - Type 2.1 (code d'identification Lowara : CTF-21)

- n'inclut pas les résultats des essais sur les produits fournis ou similaires.

b) **EN 10204:2004 - Type 2.2** (code d'identification Lowara : CTF-22)

- inclut les résultats des essais (certificats des matériaux) sur des produits similaires.

3) Émission d'une nouvelle déclaration de conformité CE,

- En plus de celle qui accompagne le produit, elle inclut des références à la législation européenne et aux principales normes techniques (par exemple : MD 2006/42/EC, EMC 2014/30/EU, ErP 2009/125/EC).

Remarque : si la demande est faite après la réception du produit, communiquer le code (nom) et le numéro de série (date + numéro progressif).

4) Déclaration de conformité du fabricant

- concernant un ou plusieurs types de produits sans indication de codes ou de numéros de série spécifiques.

5) Autres certificats et/ou documentation sur demande

- sous réserve de disponibilité ou faisabilité.

Reproduction des certificats et/ou de la documentation sur demande

- sous réserve de disponibilité ou faisabilité.

ANNEXE TECHNIQUE

NPSH

Les valeurs minimum de fonctionnement qui peuvent être atteintes par la pompe d'aspiration en bout sont limitées par l'apparition de la cavitation.

La cavitation est la formation de cavités remplies de vapeur à l'intérieur de liquides où la pression est réduite localement à une valeur critique, ou bien où la pression locale est égale à, ou juste en dessous de la pression de vapeur du liquide.

Les cavités remplies de vapeur s'écoulent avec le courant, et lorsqu'elles atteignent une zone à pression plus élevée la vapeur contenue dans les cavités se condense. Les cavités entrent en collision, générant des ondes de pression qui sont transmises aux parois. Celles-ci, étant soumises à des cycles de contrainte, se déforment et cèdent progressivement sous l'effet de la fatigue. Ce phénomène, caractérisé par un bruit métallique produit par le martelage sur les parois de la conduite, est appelé cavitation naissante.

Les dommages causés par la cavitation peuvent être amplifiés par la corrosion électrochimique et une élévation locale de la température en raison de la déformation plastique des parois. Les matériaux qui offrent la plus grande résistance à la chaleur et à la corrosion sont les aciers alliés, en particulier en acier austénitique. Les conditions qui déclenchent la cavitation peuvent être évaluées par le calcul de la hauteur manométrique d'aspiration nette totale, indiquée dans la littérature technique par le sigle NPSH (Net Positive Suction Head).

Le NPSH représente l'énergie totale (exprimée en m) du liquide mesurée à l'aspiration dans des conditions de cavitation naissante, à l'exclusion de la pression de vapeur (exprimé en m) que le liquide présente à l'entrée de la pompe.

Pour trouver la hauteur statique hz à laquelle installer la machine dans des conditions de sécurité, la formule suivante doit être vérifiée :

$$hp + hz \ge (NPSHr + 0.5) + hf + hpv^{1}$$

où:

hp est la pression absolue appliquée à la surface libre du liquide dans le réservoir d'aspiration, exprimée en m de liquide ; hp est le quotient entre la pression atmosphérique et le poids spécifique du liquide.

hz est la hauteur d'aspiration entre l'axe de la pompe et la surface libre du liquide dans le réservoir d'aspiration, exprimée en m ; hz est négatif lorsque le niveau de liquide est inférieur à l'axe de la pompe.

hf est la perte de charge dans la conduite d'aspiration et ses accessoires, tels que : raccords, clapet de pied, vanne, coudes, etc.

hpv est la pression de vapeur du liquide à la température de fonctionnement, exprimée en m de liquide. hpv est le quotient entre la pression de vapeur Pv et le poids spécifique du liquide.

0,5 est le facteur de sécurité.

La hauteur manométrique d'aspiration maximum possible pour l'installation dépend de la valeur de la pression atmosphérique (c'est-à-dire l'altitude au-dessus du niveau de la mer à laquelle la pompe est installée) et de la température du liquide.

Pour aider l'utilisateur, en référence à la température de l'eau (4 °C) et à l'altitude au-dessus du niveau de la mer, les tableaux ci-après montrent la baisse de la hauteur manométrique de la pression hydraulique par rapport à l'altitude au-dessus du niveau de la mer, et la perte d'aspiration en fonction de la température .

Température de l'eau (°C)	20	40	60	80	90	110	120
Perte d'aspiration (m)	0,2	0,7	2,0	5,0	7,4	15,4	21,5

Altitude au-dessu niveau de la mer		500	1000	1500	2000	2500	3000
Perte							
d'aspiration (m)	0,55	1,	1 1,	65 2	2,2	2,75	3,3

La perte de charge est indiqué dans les tableaux des pages de ce catalogue. Pour la réduire à un minimum, surtout en cas de hauteur manométrique d'aspiration élevée (plus de 4-5 m) ou dans les limites de fonctionnement avec des débits élevés, il est recommandé d'utiliser une conduite d'aspiration ayant un diamètre supérieur à celle de l'orifice d'aspiration de la pompe. Il est toujours préférable de positionner la pompe aussi près que possible du liquide à pomper.

Faire le calcul suivant :

Liquide : eau à $\sim 15^{\circ}$ C $\gamma = 1 \text{ kg/dm}^3$

Débit requis : 25 m³/h

Hauteur manométrique pour distribution requise : 70 m.

Hauteur d'aspiration : 3,5 m.

La sélection est une pompe 33SV3G075T avec valeur NPSH

requise de 2 m à 25 m³/h.

Pour eau à 15 °C

$$hp = Pa/\gamma = 10,33m$$
, $hpv = Pv/\gamma = 0,174m$ (0,01701 bar)

La perte de charge Hf dans la conduite d'aspiration avec clapet de pied est d'environ 1,2 m.

En remplaçant les paramètres de la formule ① par les valeurs numériques ci-dessus, on a :

$$10,33 + (-3,5) \ge (2 + 0,5) + 1,2 + 0,17$$

à partir de laquelle nous avons : 6.8 > 3.9

La relation est donc vérifiée.

a **xylem** brand

PRESSION DE VAPEUR f TABLEAU DE PRESSION DE VAPEUR f DENSITÉ DE L'EAU

0 273,15 0,00611 0,9998 55 328,15 0,15741 0,9857 120 393,15 1,9854 1 274,15 0,00657 0,9999 56 329,15 0,16511 0,9852 122 395,15 2,2504 3 276,15 0,00758 0,9999 58 331,15 0,18147 0,9846 124 397,15 2,2504 4 277,15 0,00813 1,0000 59 332,15 0,19016 0,9837 128 401,15 2,5435 5 278,15 0,00813 1,0000 60 333,15 0,19916 0,9837 128 401,15 2,5435 6 279,15 0,00935 1,0000 61 334,15 0,2080 0,9821 134 407,15 3,041 8 281,15 0,01001 0,9999 62 335,15 0,2286 0,9816 136 409,15 3,233 9 282,15 0,01147 0,9998 63 336,	kg/dm³ 0,9429 0,9412 0,9396 0,9379 0,9362 0,9346 0,9328 0,9311 0,9294 0,9276 0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815
0 273,15 0,00611 0,9998 55 328,15 0,15741 0,9857 120 393,15 1,9854 1 274,15 0,00766 0,9999 56 329,15 0,16511 0,9852 122 395,15 2,1445 3 276,15 0,00758 0,9999 58 331,15 0,18147 0,9842 126 399,15 2,2593 4 277,15 0,00813 1,0000 60 333,15 0,19016 0,9837 128 401,15 2,5435 5 278,15 0,00872 1,0000 60 333,15 0,19916 0,9837 128 401,15 2,5435 6 279,15 0,00935 1,0000 61 334,15 0,2086 0,9821 134 407,15 3,041 8 281,15 0,01001 0,9999 62 335,15 0,2286 0,9816 136 409,15 3,223 9 282,15 0,01147 0,9998 63 336,	0,9429 0,9412 0,9396 0,9379 0,9362 0,9346 0,9328 0,9311 0,9294 0,9276 0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815
2 275,15 0,00706 0,9999 57 330,15 0,17313 0,9846 124 397,15 2,2504 3 276,15 0,00758 0,9999 58 331,15 0,18147 0,9842 126 399,15 2,3933 4 277,15 0,00813 1,0000 69 333,15 0,19016 0,9832 130 403,15 2,7013 6 279,15 0,00935 1,0000 61 334,15 0,2086 0,9826 132 405,15 2,867 7 280,15 0,01001 0,9999 62 335,15 0,2184 0,9821 134 407,15 3,041 10 283,15 0,01017 0,9999 63 336,15 0,2280 0,9816 136 409,15 3,223 9 282,15 0,01147 0,9999 65 338,15 0,2501 0,9805 140 413,15 3,614 11 284,15 0,01312 0,9997 66 339,15	0,9396 0,9379 0,9362 0,9346 0,9328 0,9311 0,9294 0,9276 0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815
3 276,15 0,00758 0,9999 58 331,15 0,18147 0,9842 126 399,15 2,3933 4 277,15 0,00813 1,0000 59 332,15 0,19016 0,9837 128 401,15 2,5435 5 278,15 0,00872 1,0000 60 333,15 0,1992 0,98326 132 405,15 2,7013 6 279,15 0,009035 1,0000 61 334,15 0,2086 0,9826 132 405,15 2,867 7 280,15 0,01072 0,9999 62 335,15 0,2184 0,9816 136 409,15 3,223 9 282,15 0,01147 0,9998 64 337,15 0,2291 0,9816 136 409,15 3,223 10 283,15 0,01227 0,9997 65 338,15 0,2291 0,9805 140 413,15 3,614 11 284,15 0,01401 0,9996 67 340,1	0,9379 0,9362 0,9346 0,9328 0,9311 0,9294 0,9276 0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815
4 277,15 0,00813 1,0000 59 332,15 0,19016 0,9837 128 401,15 2,5435 5 278,15 0,00872 1,0000 60 333,15 0,1992 0,9832 130 403,15 2,7013 6 279,15 0,00935 1,0000 61 334,15 0,2086 0,9826 132 405,15 2,867 7 280,15 0,01071 0,9999 63 336,15 0,2286 0,9816 136 409,15 3,223 9 282,15 0,01147 0,9998 64 337,15 0,2286 0,9816 136 409,15 3,223 10 283,15 0,01227 0,9997 65 338,15 0,2281 0,9805 140 413,15 3,614 11 284,15 0,01312 0,9997 66 339,15 0,2615 0,9799 145 418,15 4,155 12 285,15 0,01401 0,9996 67 340,15 </td <td>0,9362 0,9346 0,9328 0,9311 0,9294 0,9276 0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815</td>	0,9362 0,9346 0,9328 0,9311 0,9294 0,9276 0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815
5 278,15 0,00872 1,0000 60 333,15 0,1992 0,9832 130 403,15 2,7013 6 279,15 0,00935 1,0000 61 334,15 0,2086 0,9826 132 405,15 2,867 7 280,15 0,01072 0,9999 62 335,15 0,2184 0,9821 134 407,15 3,041 8 281,15 0,01072 0,9999 63 336,15 0,2286 0,9816 136 409,15 3,223 9 282,15 0,01147 0,9998 64 337,15 0,2391 0,9811 138 409,15 3,223 10 283,15 0,01227 0,9997 65 338,15 0,2501 0,9805 140 413,15 3,614 11 284,15 0,01401 0,9996 67 340,15 0,2733 0,9793 145 418,15 4,155 13 286,15 0,01401 0,9996 67 340,15 <td>0,9346 0,9328 0,9311 0,9294 0,9276 0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815</td>	0,9346 0,9328 0,9311 0,9294 0,9276 0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815
6 279,15 0,00935 1,0000 61 334,15 0,2086 0,9826 132 405,15 2,867 7 280,15 0,01001 0,9999 62 335,15 0,2184 0,9821 134 407,15 3,041 8 281,15 0,01072 0,9998 64 337,15 0,2286 0,9816 136 409,15 3,223 10 283,15 0,01147 0,9997 65 338,15 0,2501 0,9805 140 413,15 3,614 11 284,15 0,01312 0,9997 66 339,15 0,2615 0,9799 145 418,15 4,155 12 285,15 0,01497 0,9994 68 341,15 0,2856 0,9789 145 418,15 4,155 13 286,15 0,01497 0,9994 68 341,15 0,2856 0,9782 165 438,15 7,008 15 288,15 0,01497 0,9993 70 343,15 <td>0,9328 0,9311 0,9294 0,9276 0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815</td>	0,9328 0,9311 0,9294 0,9276 0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815
7 280,15 0,01001 0,9999 62 335,15 0,2184 0,9821 134 407,15 3,041 8 281,15 0,01072 0,9999 63 336,15 0,2286 0,9816 136 409,15 3,223 9 282,15 0,01147 0,9997 65 338,15 0,2391 0,9811 138 411,15 3,414 10 283,15 0,01227 0,9997 66 339,15 0,2615 0,9799 145 418,15 4,155 12 285,15 0,01401 0,9996 67 340,15 0,2733 0,9793 155 428,15 5,433 13 286,15 0,01407 0,9994 68 341,15 0,2856 0,9788 160 433,15 6,181 14 287,15 0,01597 0,9993 69 342,15 0,2984 0,9782 165 438,15 7,008 15 288,15 0,01877 0,9998 71 344,15 <td>0,9311 0,9294 0,9276 0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815</td>	0,9311 0,9294 0,9276 0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815
8 281,15 0,01072 0,9999 63 336,15 0,2286 0,9816 136 409,15 3,223 9 282,15 0,01147 0,9998 64 337,15 0,2391 0,9811 138 411,15 3,414 10 283,15 0,01227 0,9997 65 338,15 0,2501 0,9805 140 413,15 3,614 11 284,15 0,01312 0,9997 66 339,15 0,2615 0,9799 155 428,15 4,155 12 285,15 0,01407 0,9994 68 341,15 0,2856 0,9788 160 433,15 6,181 14 287,15 0,01597 0,9993 69 342,15 0,2826 0,9782 165 438,15 7,008 15 288,15 0,01704 0,9992 70 343,15 0,3116 0,9777 170 433,15 7,920 16 289,15 0,01936 0,9988 72 345,15 </td <td>0,9294 0,9276 0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815</td>	0,9294 0,9276 0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815
9 282,15 0,01147 0,9998 64 337,15 0,2391 0,9805 140 413,15 3,414 10 283,15 0,01227 0,9997 65 338,15 0,2501 0,9805 140 413,15 3,614 11 284,15 0,01401 0,9996 66 339,15 0,2615 0,9799 145 418,15 4,155 12 285,15 0,01497 0,9994 68 341,15 0,2856 0,9788 160 433,15 6,181 14 287,15 0,01597 0,9993 69 342,15 0,2866 0,9782 165 438,15 7,008 15 288,15 0,01704 0,9992 70 343,15 0,3116 0,9777 170 433,15 7,200 16 289,15 0,01817 0,9999 71 344,15 0,3253 0,9770 175 448,15 8,924 17 290,15 0,02062 0,9987 73 346,15<	0,9276 0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815
10 283,15 0,01227 0,9997 65 338,15 0,2501 0,9805 140 413,15 3,614 11 284,15 0,01312 0,9997 66 339,15 0,2615 0,9799 145 418,15 4,155 12 285,15 0,01401 0,9996 67 340,15 0,2733 0,9793 155 428,15 5,433 13 286,15 0,01597 0,9994 68 341,15 0,2856 0,9788 160 433,15 6,181 14 287,15 0,01597 0,9993 69 342,15 0,2984 0,9782 165 438,15 7,008 15 288,15 0,01704 0,9992 70 343,15 0,3116 0,9772 170 433,15 7,008 16 289,15 0,01817 0,9998 72 345,15 0,3396 0,9765 180 453,15 10,027 18 291,15 0,02062 0,9987 73 346,1	0,9258 0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815
11 284,15 0,01312 0,9997 66 339,15 0,2615 0,9799 145 418,15 4,155 12 285,15 0,01401 0,9996 67 340,15 0,2733 0,9793 155 428,15 5,433 13 286,15 0,01497 0,9994 68 341,15 0,2856 0,9788 160 433,15 6,181 14 287,15 0,01597 0,9993 69 342,15 0,2984 0,9782 165 438,15 7,008 15 288,15 0,01817 0,9990 70 343,15 0,3116 0,9777 170 433,15 7,920 16 289,15 0,01936 0,9998 72 345,15 0,3396 0,9776 175 448,15 8,924 17 290,15 0,01936 0,9988 72 345,15 0,3396 0,9766 185 458,15 11,233 19 292,15 0,02196 0,9987 73 346,1	0,9214 0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815
12 285,15 0,01401 0,9996 67 340,15 0,2733 0,9793 155 428,15 5,433 13 286,15 0,01497 0,9994 68 341,15 0,2856 0,9788 160 433,15 6,181 14 287,15 0,01597 0,9993 69 342,15 0,2984 0,9782 165 438,15 7,008 15 288,15 0,01704 0,9992 70 343,15 0,3116 0,9777 170 433,15 7,920 16 289,15 0,01936 0,9998 71 344,15 0,3253 0,9770 175 448,15 8,924 17 290,15 0,01936 0,9988 72 345,15 0,3360 0,9760 185 458,15 10,022 18 291,15 0,02196 0,9987 74 347,15 0,3696 0,9753 190 463,15 12,551 20 293,15 0,024850 0,9981 76 349	0,9121 0,9073 0,9024 0,8973 0,8921 0,8869 0,8815
13 286,15 0,01497 0,9994 68 341,15 0,2856 0,9788 160 433,15 6,181 14 287,15 0,01597 0,9993 69 342,15 0,2984 0,9782 165 438,15 7,008 15 288,15 0,01704 0,9992 70 343,15 0,3116 0,9777 170 433,15 7,920 16 289,15 0,01817 0,9990 71 344,15 0,3253 0,9770 175 448,15 8,924 17 290,15 0,01936 0,9988 72 345,15 0,3396 0,9765 180 453,15 10,027 18 291,15 0,02062 0,9987 73 346,15 0,3543 0,9760 185 458,15 11,233 19 292,15 0,02196 0,9985 74 347,15 0,3696 0,9753 190 463,15 12,551 20 293,15 0,02480 0,9981 76 349	0,9073 0,9024 0,8973 0,8921 0,8869 0,8815
14 287,15 0,01597 0,9993 69 342,15 0,2984 0,9782 165 438,15 7,008 15 288,15 0,01704 0,9992 70 343,15 0,3116 0,9777 170 433,15 7,920 16 289,15 0,01817 0,9990 71 344,15 0,3253 0,9770 175 448,15 8,924 17 290,15 0,01936 0,9988 72 345,15 0,3396 0,9765 180 453,15 10,027 18 291,15 0,02062 0,9987 73 346,15 0,3543 0,9760 185 458,15 11,233 19 292,15 0,02196 0,9985 74 347,15 0,3696 0,9753 190 463,15 12,551 20 293,15 0,02337 0,9981 76 349,15 0,4019 0,9741 200 473,15 15,550 21 294,15 0,02642 0,9978 77 35	0,9024 0,8973 0,8921 0,8869 0,8815
15 288,15 0,01704 0,9992 70 343,15 0,3116 0,9777 170 433,15 7,920 16 289,15 0,01817 0,9990 71 344,15 0,3253 0,9770 175 448,15 8,924 17 290,15 0,01936 0,9988 72 345,15 0,3396 0,9765 180 453,15 10,027 18 291,15 0,02062 0,9987 73 346,15 0,3543 0,9760 185 458,15 11,233 19 292,15 0,02196 0,9985 74 347,15 0,3696 0,9753 190 463,15 12,551 20 293,15 0,02337 0,9981 76 349,15 0,4019 0,9748 195 468,15 13,987 21 294,15 0,02642 0,9978 77 350,15 0,4189 0,9735 205 478,15 17,243 23 296,15 0,02808 0,9976 78 3	0,8973 0,8921 0,8869 0,8815
16 289,15 0,01817 0,9990 71 344,15 0,3253 0,9770 175 448,15 8,924 17 290,15 0,01936 0,9988 72 345,15 0,3396 0,9765 180 453,15 10,027 18 291,15 0,02062 0,9987 73 346,15 0,3543 0,9760 185 458,15 11,233 19 292,15 0,02196 0,9985 74 347,15 0,3696 0,9753 190 463,15 12,551 20 293,15 0,02337 0,9981 75 348,15 0,3855 0,9748 195 468,15 13,987 21 294,15 0,24850 0,9981 76 349,15 0,4019 0,9741 200 473,15 15,550 22 295,15 0,02642 0,9978 77 350,15 0,4189 0,9735 205 478,15 17,243 23 296,15 0,02808 0,9974 79	0,8921 0,8869 0,8815
17 290,15 0,01936 0,9988 72 345,15 0,3396 0,9765 180 453,15 10,027 18 291,15 0,02062 0,9987 73 346,15 0,3543 0,9760 185 458,15 11,233 19 292,15 0,02196 0,9985 74 347,15 0,3696 0,9753 190 463,15 12,551 20 293,15 0,02337 0,9983 75 348,15 0,3855 0,9748 195 468,15 13,987 21 294,15 0,24850 0,9981 76 349,15 0,4019 0,9741 200 473,15 15,550 22 295,15 0,02642 0,9978 77 350,15 0,4189 0,9735 205 478,15 17,243 23 296,15 0,02808 0,9976 78 351,15 0,4365 0,9729 210 483,15 17,243 24 297,15 0,03166 0,9971 80 <td< td=""><td>0,8869 0,8815</td></td<>	0,8869 0,8815
18 291,15 0,02062 0,9987 73 346,15 0,3543 0,9760 185 458,15 11,233 19 292,15 0,02196 0,9985 74 347,15 0,3696 0,9753 190 463,15 12,551 20 293,15 0,02337 0,9981 75 348,15 0,3855 0,9748 195 468,15 13,987 21 294,15 0,24850 0,9981 76 349,15 0,4019 0,9741 200 473,15 15,550 22 295,15 0,02642 0,9978 77 350,15 0,4189 0,9735 205 478,15 17,243 23 296,15 0,02808 0,9976 78 351,15 0,4365 0,9729 210 483,15 19,077 24 297,15 0,02982 0,9971 80 353,15 0,4364 0,9723 215 488,15 21,060 25 298,15 0,03166 0,9971 80 <td< td=""><td>0,8815</td></td<>	0,8815
19 292,15 0,02196 0,9985 74 347,15 0,3696 0,9753 190 463,15 12,551 20 293,15 0,02337 0,9983 75 348,15 0,3855 0,9748 195 468,15 13,987 21 294,15 0,24850 0,9981 76 349,15 0,4019 0,9741 200 473,15 15,550 22 295,15 0,02642 0,9978 77 350,15 0,4189 0,9735 205 478,15 17,243 23 296,15 0,02808 0,9976 78 351,15 0,4365 0,9729 210 483,15 19,077 24 297,15 0,02982 0,9974 79 352,15 0,4547 0,9723 215 488,15 21,060 25 298,15 0,03166 0,9971 80 353,15 0,4736 0,9716 220 493,15 23,198 26 299,15 0,03564 0,9968 81 <td< td=""><td></td></td<>	
20 293,15 0,02337 0,9983 75 348,15 0,3855 0,9748 195 468,15 13,987 21 294,15 0,24850 0,9981 76 349,15 0,4019 0,9741 200 473,15 15,550 22 295,15 0,02642 0,9978 77 350,15 0,4189 0,9735 205 478,15 17,243 23 296,15 0,02808 0,9976 78 351,15 0,4365 0,9729 210 483,15 19,077 24 297,15 0,02982 0,9974 79 352,15 0,4547 0,9729 210 483,15 19,077 25 298,15 0,03166 0,9971 80 353,15 0,4736 0,9716 220 493,15 23,198 27 300,15 0,03564 0,9966 82 355,15 0,5133 0,9704 230 503,15 27,976 28 301,15 0,04004 0,9960 84 <td< td=""><td></td></td<>	
21 294,15 0,24850 0,9981 76 349,15 0,4019 0,9741 200 473,15 15,550 22 295,15 0,02642 0,9978 77 350,15 0,4189 0,9735 205 478,15 17,243 23 296,15 0,02808 0,9976 78 351,15 0,4365 0,9729 210 483,15 19,077 24 297,15 0,02982 0,9974 79 352,15 0,4547 0,9723 215 488,15 21,060 25 298,15 0,03166 0,9971 80 353,15 0,4736 0,9716 220 493,15 23,198 26 299,15 0,03360 0,9968 81 354,15 0,4931 0,9710 225 498,15 25,501 27 300,15 0,03564 0,9966 82 355,15 0,5133 0,9704 230 503,15 27,976 28 301,15 0,04004 0,9960 84 <td< td=""><td>0,8760</td></td<>	0,8760
22 295,15 0,02642 0,9978 77 350,15 0,4189 0,9735 205 478,15 17,243 23 296,15 0,02808 0,9976 78 351,15 0,4365 0,9729 210 483,15 19,077 24 297,15 0,02982 0,9974 79 352,15 0,4547 0,9723 215 488,15 21,060 25 298,15 0,03166 0,9971 80 353,15 0,4736 0,9716 220 493,15 23,198 26 299,15 0,03360 0,9968 81 354,15 0,4931 0,9710 225 498,15 25,501 27 300,15 0,03564 0,9966 82 355,15 0,5133 0,9704 230 503,15 27,976 28 301,15 0,04044 0,9960 84 357,15 0,5557 0,9691 235 508,15 30,632 29 302,15 0,04241 0,9957 85 <td< td=""><td>0,8704</td></td<>	0,8704
23 296,15 0,02808 0,9976 78 351,15 0,4365 0,9729 210 483,15 19,077 24 297,15 0,02982 0,9974 79 352,15 0,4547 0,9723 215 488,15 21,060 25 298,15 0,03166 0,9971 80 353,15 0,4736 0,9716 220 493,15 23,198 26 299,15 0,03360 0,9968 81 354,15 0,4931 0,9710 225 498,15 25,501 27 300,15 0,03564 0,9966 82 355,15 0,5133 0,9704 230 503,15 27,976 28 301,15 0,03778 0,9963 83 356,15 0,5342 0,9697 235 508,15 30,632 29 302,15 0,04044 0,9950 84 357,15 0,5557 0,9691 240 513,15 33,478 31 304,15 0,04491 0,9954 86 <td< td=""><td>0,8647</td></td<>	0,8647
24 297,15 0,02982 0,9974 79 352,15 0,4547 0,9723 215 488,15 21,060 25 298,15 0,03166 0,9971 80 353,15 0,4736 0,9716 220 493,15 23,198 26 299,15 0,03360 0,9968 81 354,15 0,4931 0,9710 225 498,15 25,501 27 300,15 0,03564 0,9966 82 355,15 0,5133 0,9704 230 503,15 27,976 28 301,15 0,03778 0,9963 83 356,15 0,5342 0,9697 235 508,15 30,632 29 302,15 0,04004 0,9960 84 357,15 0,5557 0,9691 240 513,15 33,478 30 303,15 0,04241 0,9957 85 358,15 0,5780 0,9684 245 518,15 36,523 31 304,15 0,04753 0,9951 87 <td< td=""><td>0,8588</td></td<>	0,8588
25 298,15 0,03166 0,9971 80 353,15 0,4736 0,9716 220 493,15 23,198 26 299,15 0,03360 0,9968 81 354,15 0,4931 0,9710 225 498,15 25,501 27 300,15 0,03564 0,9966 82 355,15 0,5133 0,9704 230 503,15 27,976 28 301,15 0,03778 0,9963 83 356,15 0,5342 0,9697 235 508,15 30,632 29 302,15 0,04004 0,9960 84 357,15 0,5557 0,9691 240 513,15 33,478 30 303,15 0,04241 0,9957 85 358,15 0,5780 0,9684 245 518,15 36,523 31 304,15 0,04491 0,9954 86 359,15 0,6011 0,9678 250 523,15 39,776 32 305,15 0,04753 0,9951 87 <td< td=""><td>0,8528</td></td<>	0,8528
26 299,15 0,03360 0,9968 81 354,15 0,4931 0,9710 225 498,15 25,501 27 300,15 0,03564 0,9966 82 355,15 0,5133 0,9704 230 503,15 27,976 28 301,15 0,03778 0,9963 83 356,15 0,5342 0,9697 235 508,15 30,632 29 302,15 0,04004 0,9960 84 357,15 0,5557 0,9691 240 513,15 33,478 30 303,15 0,04241 0,9957 85 358,15 0,5780 0,9684 245 518,15 36,523 31 304,15 0,04491 0,9954 86 359,15 0,6011 0,9678 250 523,15 39,776 32 305,15 0,04753 0,9951 87 360,15 0,6249 0,9671 255 528,15 43,246	0,8467
27 300,15 0,03564 0,9966 82 355,15 0,5133 0,9704 230 503,15 27,976 28 301,15 0,03778 0,9963 83 356,15 0,5342 0,9697 235 508,15 30,632 29 302,15 0,04004 0,9960 84 357,15 0,5557 0,9691 240 513,15 33,478 30 303,15 0,04241 0,9957 85 358,15 0,5780 0,9684 245 518,15 36,523 31 304,15 0,04491 0,9954 86 359,15 0,6011 0,9678 250 523,15 39,776 32 305,15 0,04753 0,9951 87 360,15 0,6249 0,9671 255 528,15 43,246	0,8403
28 301,15 0,03778 0,9963 83 356,15 0,5342 0,9697 235 508,15 30,632 29 302,15 0,04004 0,9960 84 357,15 0,5557 0,9691 240 513,15 33,478 30 303,15 0,04241 0,9957 85 358,15 0,5780 0,9684 245 518,15 36,523 31 304,15 0,04491 0,9954 86 359,15 0,6011 0,9678 250 523,15 39,776 32 305,15 0,04753 0,9951 87 360,15 0,6249 0,9671 255 528,15 43,246	0,8339
29 302,15 0,04004 0,9960 84 357,15 0,5557 0,9691 240 513,15 33,478 30 303,15 0,04241 0,9957 85 358,15 0,5780 0,9684 245 518,15 36,523 31 304,15 0,04491 0,9954 86 359,15 0,6011 0,9678 250 523,15 39,776 32 305,15 0,04753 0,9951 87 360,15 0,6249 0,9671 255 528,15 43,246	0,8273
30 303,15 0,04241 0,9957 85 358,15 0,5780 0,9684 245 518,15 36,523 31 304,15 0,04491 0,9954 86 359,15 0,6011 0,9678 250 523,15 39,776 32 305,15 0,04753 0,9951 87 360,15 0,6249 0,9671 255 528,15 43,246	0,8205
31 304,15 0,04491 0,9954 86 359,15 0,6011 0,9678 250 523,15 39,776 32 305,15 0,04753 0,9951 87 360,15 0,6249 0,9671 255 528,15 43,246	0,8136
32 305,15 0,04753 0,9951 87 360,15 0,6249 0,9671 255 528,15 43,246	0,8003
	0,7992
33 300, 3 0,03023 0,334/ 00 30 , 3 0.0433 0.3003 200 31 40 343	0,7839
	0,7759
	0,7678
	0,7593
	0,7505
	0,7415
	0,7321
	0,7223
	0,7122
	0,7017
	0,6906
	0,6791
	0,6669
	0,6541
	0,6404
	0,6102
	0,5743
	0,5275
	0,5275 0,4518
53 326,15 0,14293 0,9862 116 389,15 1,7465 0,9460	
54 327,15 0,15002 0,9862 118 391,15 1,8628 0,9445	0,4518

G-at_npsh_b_sc

a xylem brand TABLEAU DE RÉSISTANCE À L'ÉCOULEMENT SUR 100 M DE CANALISATION DROITE EN FONTE (FORTEMENT)

DÉ	BIT									IAMÈTR	E NOMI	NAI an	mm et e	n nouc	00					
m ³ /h	l/min			15	20	25	32	40	50	65	80 80	100	125	150	175	200	250	300	350	400
,	7			1/2"	3/4"	1"	1 1/4"	1 1/2"	2	2 1/2"	3"	4"	5"	6"	7"	8"	10"	12"	14"	16"
0,6	10		v hr	0,94 16	0,53 3,94	0,34 1,33	0,21 0,40	0,13 0,13												
0,9	15		v hr	1,42 33,9	0,80 8,35	0,51 2,82	0,31 0,85	0,20 0,29			Les vale	eurs hr de	oivent êti	re multip	liées par	:				
1,2	20		V	1,89	1,06	0,68	0,41	0,27	0,17		0.71 n	our tuvai	ıx en acie	er galvani	isé ou pe	int				
			hr v	57,7 2,36	14,21	4,79 0,85	1,44 0,52	0,49	0,16			-		_						
1,5	25		hr	87,2	21,5	7,24	2,18	0,73	0,25		0,54 p	our tuyat	ux en acie	er inoxyd	able ou e	en cuivre				
1,8	30		v hr	2,83 122	1,59 30,1	1,02 10,1	0,62 3,05	0,40 1,03	0,25 0,35		0,47 p	our tuyaı	ux en PVC	ou PE						
2,1	35		v hr	3,30 162	1,86 40,0	1,19 13,5	0,73 4,06	0,46 1,37	0,30 0,46			1	1	1	l	l				
2,4	40		V		2,12	1,36	0,83	0,53	0,34	0,20										
3	50		hr v		51,2 2,65	17,3 1,70	5,19 1,04	1,75 0,66	0,59	0,16 0,25										
			hr v		77,4 3,18	26,1 2,04	7,85 1,24	2,65 0,80	0,89	0,25										
3,6	60		hr		108	36,6	11,0	3,71	1,25	0,35										
4,2	70		v hr		3,72 144	2,38 48,7	1,45 14,6	0,93 4,93	0,59 1,66	0,35 0,46										
4,8	80		v hr		4,25 185	2,72 62,3	1,66 18,7	1,06 6,32	0,68 2,13	0,40 0,59										
5,4	90		٧			3,06	1,87	1,19	0,76	0,45	0,30									
6	100		hr v			77,5 3,40	23,3	7,85 1,33	2,65 0,85	0,74	0,27									
			hr v			94,1 4,25	28,3 2,59	9,54 1,66	3,22 1,06	0,90 0,63	0,33									
7,5	125		hr			142	42,8	14,4	4,86	1,36	0,49	0.33								
9	150		v hr				3,11 59,9	1,99 20,2	1,27 6,82	0,75 1,90	0,50 0,69	0,32 0,23								
10,5	175		v hr				3,63 79,7	2,32 26,9	1,49 9,07	0,88 2,53	0,58 0,92	0,37 0,31								
12	200		V				4,15	2,65	1,70	1,01	0,66	0,42								
15	250		hr v				102 5,18	34,4 3,32	11,6 2,12	3,23 1,26	1,18 0,83	0,40 0,53	0,34							
			hr v				154	52,0 3,98	17,5 2,55	4,89 1,51	1,78	0,60	0,20							
18	300		hr					72,8	24,6	6,85	2,49	0,84	0,28	0.20						
24	400		v hr					5,31 124	3,40 41,8	2,01 11,66	4,24	0,85 1,43	0,54 0,48	0,38 0,20						
30	500		v hr					6,63 187	4,25 63,2	2,51 17,6	1,66 6,41	1,06 2,16	0,68 0,73	0,47 0,30						
36	600		v hr						5,10 88,6	3,02 24,7	1,99 8,98	1,27 3,03	0,82 1,02	0,57 0,42	0,42 0,20					
42	700		V						5,94	3,52	2,32	1,49	0,95	0,66	0,49					
			hr v						118 6,79	32,8 4,02	11,9 2,65	4,03 1,70	1,36 1,09	0,56 0,75	0,26 0,55					
48	800		hr v						151 7,64	42,0 4,52	15,3 2,99	5,16 1,91	1,74 1,22	0,72 0,85	0,34 0,62					
54	900		hr						188	52,3	19,0	6,41	2,16	0,89	0,42					
60	1000		v hr							5,03 63,5	3,32 23,1	2,12 7,79	1,36 2,63	0,94 1,08	0,69 0,51	0,53 0,27				
75	1250		v hr							6,28 96,0	4,15 34,9	2,65 11,8	1,70 3,97	1,18 1,63	0,87 0,77	0,66 0,40				
90	1500		V							7,54	4,98	3,18	2,04	1,42	1,04	0,80				
105	1750		hr v							134 8,79	48,9 5,81	16,5 3,72	5,57 2,38	2,29 1,65	1,08 1,21	0,56 0,93				
			hr v							179	65,1 6,63	21,9 4,25	7,40 2,72	3,05 1,89	1,44 1,39	0,75 1,06	0,68	1		
120	2000		hr								83,3	28,1	9,48	3,90	1,84	0,96	0,32			
150	2500		v hr								8,29 126	5,31 42,5	3,40 14,3	2,36 5,89	1,73 2,78	1,33 1,45	0,85 0,49			
180	3000		v hr									6,37 59,5	4,08 20,1	2,83 8,26	2,08 3,90	1,59 2,03	1,02 0,69	0,71 0,28		
210	3500		V									7,43	4,76	3,30	2,43	1,86	1,19	0,83		
240	4000		hr v									79,1 8,49	26,7 5,44	11,0 3,77	5,18 2,77	2,71	0,91 1,36	0,38		
			hr v									101	34,2 6,79	14,1 4,72	6,64 3,47	3,46 2,65	1,17 1,70	0,48		
300	5000		hr										51,6	21,2	10,0	5,23	1,77	0,73		
360	6000		v hr										8,15 72,3	5,66 29,8	4,16 14,1	3,18 7,33	2,04 2,47	1,42 1,02		
420	7000		v hr											6,61 39,6	4,85 18,7	3,72 9,75	2,38 3,29	1,65 1,35	1,21 0,64	
480	8000		٧											7,55	5,55	4,25	2,72	1,89	1,39	
540	9000		hr V											50,7 8,49	23,9 6,24	12,49 4,78	4,21 3,06	1,73 2,12	0,82 1,56	1,19
			hr v											63,0	29,8 6,93	15,5 5,31	5,24 3,40	2,16 2,36	1,02 1,73	0,53 1,33
600	10000		hr												36,2	18,9	6,36	2,62	1,24	0,65

hr = résistance à l'écoulement pour 100 m de canalisation droite (m)

V = vitesse de l'eau (m/s)

G-at-pct-fr_b_th

PERTE DE CHARGE TABLEAU DES PERTES DE CHARGE DANS LES COUDES, VANNES ET CLAPETS

La perte de charge est calculée selon la méthode de la longueur de canalisation équivalente, selon le tableau cidessous :

TYPE D'ACCESSOIRE		DN										
TTPE D'ACCESSOIRE	25	32	40	50	65	80	100	125	150	200	250	300
				Lo	ongueur	de pipel	line équi	valent (r	n)			
Coude à 45°	0,2	0,2	0,4	0,4	0,6	0,6	0,9	1,1	1,5	1,9	2,4	2,8
Coude à 90°	0,4	0,6	0,9	1,1	1,3	1,5	2,1	2,6	3	3,9	4,7	5,8
Coude lisse à 90°	0,4	0,4	0,4	0,6	0,9	1,1	1,3	1,7	1,9	2,8	3,4	3,9
Té ou croix de jonction	1,1	1,3	1,7	2,1	2,6	3,2	4,3	5,3	6,4	7,5	10,7	12,8
Robinet-vanne	-	-	-	0,2	0,2	0,2	0,4	0,4	0,6	0,9	1,1	1,3
Clapet de pied	1,1	1,5	1,9	2,4	3	3,4	4,7	5,9	7,4	9,6	11,8	13,9
Clapet anti-retour	1,1	1,5	1,9	2,4	3	3,4	4,7	5,9	7,4	9,6	11,8	13,9

G-a-pcv-fr_b_th

Ce tableau est valable pour le coefficient Hazen Williams C = 100 (tuyauterie en fonte); pour les tuyauteries en acier multiplier les valeurs par 1,41;

pour l'acier inoxydable, le cuivre et les tuyauteries recouvertes de fonte, multiplier les valeurs par 1,85 ; Lorsque la **longueur de tuyauterie équivalente** a été déterminée, les pertes de charge s'obtiennent en consultant le tableau des pertes de charge.

Les valeurs fournies sont des valeurs indicatives qui peuvent varier légèrement selon le modèle, en particulier pour les vannes et les clapets anti-retour, raison pour laquelle il est recommandé de vérifier les valeurs fournies par les fabricants.

a **xylem** brand

CAPACITÉ VOLUMÉTRIQUE

Litres par	Mètres cubes	Pieds cubes	Pieds cubes	Gallon impérial	Gallon US
minute	par heure	par heure	par minute	par minute	par minute
l/min	m³/h	ft³/h	ft³/min	Gal. imp./min	Gal. US/min
1,0000	0,0600	2,1189	0,0353	0,2200	0,2642
16,6667	1,0000	35,3147	0,5886	3,6662	4,4029
0,4719	0,0283	1,0000	0,0167	0,1038	0,1247
28,3168	1,6990	60,0000	1,0000	6,2288	7,4805
4,5461	0,2728	9,6326	0,1605	1,0000	1,2009
3,7854	0,2271	8,0208	0,1337	0,8327	1,0000

PRESSION ET HAUTEUR MANOMÉTRIQUE

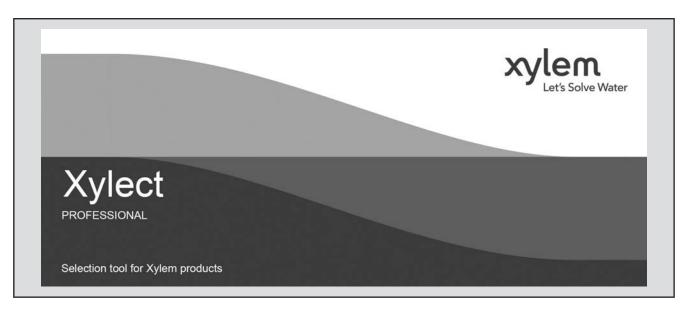
Newton par mètre carré	Kilo Pascal	bar	Livres-force par pouce carré	Mètre d'eau	Millimètres de mercure
N/m ²	kPa	bar	psi	m H₂O	mm Hg
1,0000	0,0010	1 x 10 ⁻⁵	1,45 x 10 ⁻⁴	1,02 x 10 ⁻⁴	0,0075
1 000,0000	1,0000	0,0100	0,1450	0,1020	7,5006
1 x 10 ⁵	100,0000	1,0000	14,5038	10,1972	750,0638
6 894,7570	6,8948	0,0689	1,0000	0,7031	51,7151
9 806,6500	9,8067	0,0981	1,4223	1,0000	73,5561
133,3220	0,1333	0,0013	0,0193	0,0136	1,0000

LONGUEUR

Millimètres	Centimètres	Mètre	Pouces	Pieds	Yards
mm	cm	m	in	ft	yd
1,0000	0,1000	0,0010	0,0394	0,0033	0,0011
10,0000	1,0000	0,0100	0,3937	0,0328	0,0109
1 000,0000	100,0000	1,0000	39,3701	3,2808	1,0936
25,4000	2,5400	0,0254	1,0000	0,0833	0,0278
304,8000	30,4800	0,3048	12,0000	1,0000	0,3333
914,4000	91,4400	0,9144	36,0000	3,0000	1,0000

VOLUME

Mètres cubes	Litres	Millilitres	Gallon impérial	Gallon US	Pied cube
m³	L	ml	imp. gal.	Gal. US	ft³
1,0000	1 000,0000	1 x 10 ⁶	219,9694	264,1720	35,3147
0,0010	1,0000	1 000,0000	0,2200	0,2642	0,0353
1 x 10 ⁻⁶	0,0010	1,0000	2,2 x 10 ⁻⁴	2,642 x 10 ⁻⁴	3,53 x 10 ⁻⁵
0,0045	4,5461	4 546,0870	1,0000	1,2009	0,1605
0,0038	3,7854	3 785,4120	0,8327	1,0000	0,1337
0,0283	28,3168	28 316,8466	6,2288	7,4805	1,0000


TEMPÉRATURE

Eau	Kelvin K	Degré Celsius °C	Fahrenheit °F
congélation	273,1500	0,0000	32,0000
ébullition	373,1500	100,0000	212,0000

G-at_pp-fr_b_sc

LOGICIEL DE SELECTION DE POMPES ET DOCUMENTATION Xylect

Xylect est un logiciel pour la sélection des pompes doté d'une riche base de données en ligne avec des informations sur les produits de toute la gamme de pompes et produits connexes Lowara et Vogel, offrant de multiples options de recherche et des outils très utiles pour la gestion des projets. Le système actualise constamment les informations de milliers de produits et accessoires.

La possibilité de rechercher par applications et les informations détaillées fournies permettent d'optimiser la sélection sans avoir de connaissances spécifiques sur les produits Lowara et Vogel.

La recherche peut être faite par :

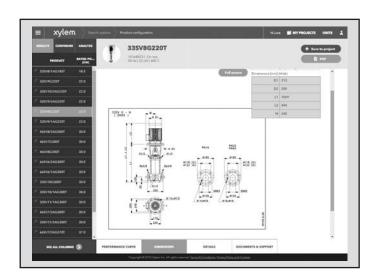
- Application
- Type de produit
- Point de fonctionnement

Xylect fournit une sortie détaillée :

- Liste avec résultats de la recherche
- Courbes de performances (débit, H manométrique, efficacité, NPSH)
- Données moteur
- Schémas d'encombrement
- Options
- Impressions fiches techniques
- Téléchargements documents y compris fichiers dxf

La recherche par application guide les utilisateurs ne connaissant pas bien la gamme de produits à faire le bon choix.

LOGICIEL DE SELECTION DE POMPES ET DOCUMENTATION Xylect


Les informations détaillées permettent de sélectionner la pompe appropriée parmi les différentes alternatives proposées.

La meilleure façon de travailler avec Xylect est de créer son compte personnel. Ceci permet de :

- Définir ses propres unités standard
- Créer et enregistrer des projets
- Partager des projets avec d'autres utilisateurs Xylect

Chaque utilisateur inscrit possède un espace personnalisé, où tous les projets sont enregistrés.

Pour plus d'informations sur Xylect, veuillez contacter notre réseau de vente ou visiter le site <u>www.xylect.com</u>.

Les schémas d'encombrement sont affichés à l'écran et peuvent être téléchargées au format dxf.

Xylem |'zīləm|

- 1) Tissu végétal qui achemine l'eau des racines vers le haut des plantes (en français : xylème) ;
- 2) Société leader mondial dans le secteur des technologies de l'eau.

Chez Xylem, nous sommes tous animés par un seul et même objectif commun : celui de créer des solutions innovantes qui répondent aux besoins en eau de la planète. Aussi, le coeur de notre mission consiste à développer de nouvelles technologies qui amélioreront demain la façon dont l'eau est utilisée, stockée et réutilisée. Tout au long du cycle de l'eau, nos produits et services permettent de transporter, traiter, analyser, surveiller et restituer l'eau à son milieu naturel de façon performante et responsable pour des secteurs variés tels que les collectivités locales, le bâtiment résidentiel ou collectif et l'industrie. Xylem offre également un portefeuille unique de solutions dans le domaine des compteurs intelligents, des réseaux de communication et des technologies d'analyse avancée pour les infrastructures de l'eau, de l'électricité et du gaz. Dans plus de 150 pays, nous avons construit de longue date de fortes relations avec nos clients, qui nous connaissent pour nos marques leaders, notre expertise en applications et notre volonté forte de développer des solutions durables.

Pour découvrir Xylem et ses solutions, rendez-vous sur xylem.com.

Xylem Water Solutions France SAS 29 rue du Port - Parc de l'Île 92022 NANTERRE Cedex Tél : 09 71 10 11 11

contact.france@xyleminc.com www.xyleminc.com/fr-fr

Flygt, Lowara et Wedeco sont des marques de Xylem. Pour obtenir la dernière version de ce document et plus d'informations sur nos marques produits, rendez-vous sur www.xyleminc.com/fr-fr © 2022 Xylem, Inc.