Manuel technique pour eaux usées

POUR GOULDS WATER TECHNOLOGY, BELL & GOSSETT, RED JACKET SERIES ET CENTRIPRO

Perte de friction

INDEX

Plastique
Volume et vélocité de tuyau
Entreposage de l'eau dans diverses grosseurs de tuyau
Débit minimum pour maintenir 2 pi/s 5
Pompe d'eaux d'égout
Mesures et sélection6
Données électriques
Agence d'homologation / Suppression de lettres fiche
Détermination des débits
Débit tuyau plein

Conditions et formules utilisables
Définitions14
Formules de base
Installations courantes
Puisard16
Effluent et égout
Entraînements à vitesses variables
Pompes d'égout18
Dispositions du panneau et schémas de câblage
Duplex monophasé20
Duplex triphasé
Simplex triphasé24
Simplex monophasé25
Schémas d'interrupteurs27
Panneaux de contrôle d'égout et interrupteurs28

PERTE DE FRICTION

TUYAU PLASTIQUE: PERTE DE FRICTION (EN PIEDS DE CHARGE) PAR 100 PI.

G/M	G/H	% po	½ po	¾ po	1 po	1¼ po	1½ po	2 po	2½ po	3 ро	4 po	6 ро	8 po	10 po
G/IVI	G/H	pi	pi	pi	pi	pi	pi							
1	60	4,25	1,38	0,356	0,11									
2	120	15,13	4,83	1,21	0,38	0,10								
3	180	31,97	9,96	2,51	0,77	0,21	0,10							
4	240	54,97	17,07	4,21	1,30	0,35	0,16							
5	300	84,41	25,76	6,33	1,92	0,51	0,24							
6	360		36,34	8,83	2,69	0,71	0,33	0,10						
8	480		63,71	15,18	4,58	1,19	0,55	0,17						
10	600		97,52	25,98	6,88	1,78	0,83	0,25	0,11					
15	900			49,68	14,63	3,75	1,74	0,52	0,22					
20	1 200			86,94	25,07	6,39	2,94	0,86	0,36	0,13				
25	1 500				38,41	9,71	4,44	1,29	0,54	0,19				
30	1 800					13,62	6,26	1,81	0,75	0,26				
35	2 100					18,17	8,37	2,42	1,00	0,35	0,09			
40	2 400					23,55	10,70	3,11	1,28	0,44	0,12			
45	2 700					29,44	13,46	3,84	1,54	0,55	0,15			
50	3 000						16,45	4,67	1,93	0,66	0,17			
60	3 600						23,48	6,60	2,71	0,93	0,25			
70	4 200							8,83	3,66	1,24	0,33			
80	4 800							11,43	4,67	1,58	0,41			
90	5 400							14,26	5,82	1,98	0,52			
100	6 000								7,11	2,42	0,63	0,08		
125	7 500								10,83	3,80	0,95	0,13		
150	9 000									5,15	1,33	0,18		
175	10 500									6,90	1,78	0,23		
200	12 000									8,90	2,27	0,30		
250	15 000										3,36	0,45	0,12	
300	18 000										4,85	0,63	0,17	
350	21 000										6,53	0,84	0,22	
400	24 000											1,08	0,28	
500	30 000											1,66	0,42	0,14
550	33 000											1,98	0,50	0,16
600	36 000											2,35	0,59	0,19
700	42 000												0,79	0,26
800	48 000												1,02	0,33
900	54 000												1,27	0,41
950	57 000													0,46
1000	60 000													0,50

PERTE DE FRICTION

TUYAU ACIER: PERTE DE FRICTION (EN PIEDS DE CHARGE) PAR 100 PI.

G/M	G/H	¾ po	½ po	3⁄4 po	1 po	1¼ po	1½ po	2 po	2½ po	3 ро	4 po	5 po	6 ро	8 po	10 po
G/W	G/H	pi	pi	pi	pi	pi	pi	pi	pi	pi	pi	pi	pi	pi	pi
1	60	4,30	1,86	0,26											
2	120	15,00	4,78	1,21	0,38										
3	180	31,80	10,00	2,50	0,77	0,10									
4	240	54,90	17,10	4,21	1,30	0,34									
5	300	83,50	25,80	6,32	1,93	0,51	0,24								
6	360		36,50	8,87	2,68	0,70	0,33	0,10							
7	420		48,70	11,80	3,56	0,93	0,44	0,13							
8	480		62,70	15,00	4,54	1,18	0,56	0,17							
9	540			18,80	5,65	1,46	0,69	0,21							
10	600			23,00	6,86	1,77	0,83	0,25	0,11	0,04					
12	720			32,60	9,62	2,48	1,16	0,34	0,15	0,05					
15	900			49,70	14,70	3,74	1,75	0,52	0,22	0,08					
20	1200			86,10	25,10	6,34	2,94	0,87	0,36	0,13					
25	1500				38,60	9,65	4,48	1,30	0,54	0,19					
30	1800				54,60	13,60	6,26	1,82	0,75	0,26					
35	2100				73,40	18,20	8,37	2,42	1,00	0,35					
40	2400				95,00	23,50	10,79	3,10	1,28	0,44					
45	2700					30,70	13,45	3,85	1,60	0,55					
70	4200					68,80	31,30	8,86	3,63	1,22	0,35				
100	6000						62,20	17,40	7,11	2,39	0,63				
150	9000							38,00	15,40	5,14	1,32	0,08			
200	12000							66,30	26,70	8,90	2,27	0,736	0,30	0,08	
250	15000							90,70	42,80	14,10	3,60	1,20	0,49	0,13	
300	18000								58,50	19,20	4,89	1,58	0,64	0,16	0,0542
350	21000								79,20	26,90	6,72	2,18	0,88	0,23	0,0719
400	24000								103,00	33,90	8,47	2,72	1,09	0,279	0,0917
450	27000								130,00	42,75	10,65	3,47	1,36	0,348	0,114
500	30000								160,00	52,50	13,00	4,16	1,66	0,424	0,138
550	33 000								193,00	63,20	15,70	4,98	1,99	0,507	0,164
600	36000								230,00	74,80	18,60	5,88	2,34	0,597	0,192
650	39000									87,50	21,70	6,87	2,73	0,694	0,224
700	42 000									101,00	25,00	7,93	3,13	0,797	0,256
750	45 000									116,00	28,60	9,05	3,57	0,907	0,291
800	48 000									131,00	32,40	10,22	4,03	1,02	0,328
850	51000									148,00	36,50	11,50	4,53	1,147	0,368
900	54000									165,00	40,80	12,90	5,05	1,27	0,410
950	57000									184,00	45,30	14,30	5,60	1,41	0,455
1000	60000									204,00	50,20	15,80	6,17	1,56	0,500

PERTE DE FRICTION

NOMBRE ÉQUIVALENT DE PIEDS DE TUYAU DROIT POUR DIFFÉRENTS RACCORDS

Dimensions des raccords, pouces	½ po	34 po	1 po	1¼ po	1½ po	2 po	2½ po	3 ро	4 po	5 po	6 po	8 po	10 po
90° EII	1,5	2,0	2,7	3,5	4,3	5,5	6,5	8,0	10,0	14,0	15	20	25
45° Ell	0,8	1,0	1,3	1,7	2,0	2,5	3,0	3,8	5,0	6,3	7,1	9,4	12
Long balayage Ell	1,0	1,4	1,7	2,3	2,7	3,5	4,2	5,2	7,0	9,0	11,0	14,0	
Coude en U fermé	3,6	5,0	6,0	8,3	10,0	13,0	15,0	18,0	24,0	31,0	37,0	39,0	
Tronçon té droit	1	2	2	3	3	4	5						
Entrée ou sortie côté té ou adaptateur de branchement à coulisseau	3,3	4,5	5,7	7,6	9,0	12,0	14,0	17,0	22,0	27,0	31,0	40,0	
Robinet à bille ou à soupape ouvert	17,0	22,0	27,0	36,0	43,0	55,0	67,0	82,0	110,0	140,0	160,0	220,0	
Robinet d'équerre ouvert	8,4	12,0	15,0	18,0	22,0	28,0	33,0	42,0	58,0	70,0	83,0	110,0	
Robinet-vanne complètement ouvert	0,4	0,5	0,6	0,8	1,0	1,2	1,4	1,7	2,3	2,9	3,5	4,5	
Clapet de retenue (anti-retour)	4	5	7	9	11	13	16	20	26	33	39	52	65
Clapet de non-retour en ligne (ressort) ou clapet de pied	4	6	8	12	14	19	23	32	43	58			

Exemple

(A) 100 pi de tuyau plastique de 2 po avec un (1) coude 90° et un (1) clapet de retenue anti-retour).

Coude 90° - équivalent à 5,5 pi de tuyau droit Clapet de retenue - équivalent à 13 pi de tuyau droit 100 pi de tuyau - équivalent à 100 pi de tuyau droit

118,5 pieds = total tuyau équivalent

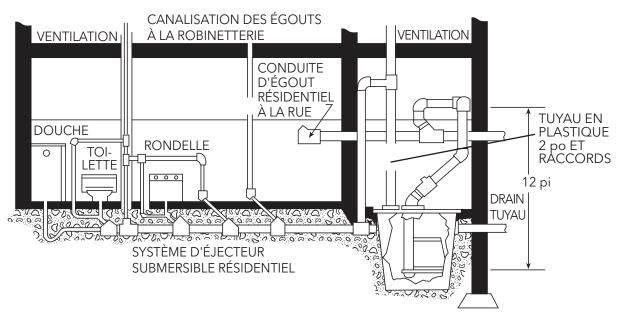
Figure de perte de friction pour tuyau de 118,5 pi.

- (B) Évaluer le débit à 80 gal/min par un tuyau en plastique de 2 po.
 - 1. Le tableau de perte de friction indique 11,43 pi de perte par 100 pi de tuyau.
 - 2. À l'étape (A) au-dessus, nous avons déterminé que la longueur total de tuyau doit être de 118,5 pi.
 - 3. Convertir 118,5 pi au pourcentage 118,5 ÷ 100 = 1,185
 - 4. Multiplier 11.43 x 1,185

13,54455 ou $\underline{13,5 \text{ pi.}}$ = Perte de friction totale dans ce système.

VOLUME ET VÉLOCITÉ DE TUYAU

ENTREPOSAGE DE L'EAU DANS DIVERSES GROSSEURS DE TUYAU


Dimension du tuyau	Volume en gallons par pied	Dimension du tuyau	Volume en gallons par pied
1¼ po	0,06	6	1,4
1½ po	0,09	8	2,6
2	0,16	10	4,07
3	0,36	12	5,87
4	0,652		

DÉBIT MINIMUM POUR MAINTENIR 2 PI/S. *VÉLOCITÉ DE CHASSE DANS DIVERS TUYAUX

Dimension du tuyau	Gal/min minimum	Dimension du tuyau	Gal/min minimum
1¼ po	9	6	180
1½ po	13	8	325
2	21	10	500
3	46	12	700
4	80		

^{*} Le défaut de maintenir ou de dépasser cette vélocité aura pour conséquence des tuyaux bouchés. Basé sur un tuyau à cédule nominal de 40.

SÉLECTION DE POMPE POUR EAUX D'ÉGOUT

La principale fonction pour laquelle la pompe submersible pour égout est conçue est de traiter des fluides d'égout et autres qui contiennent des solides et déchets non filtrés, non abrasifs. Afin d'obtenir un maximum d'efficacité et un performance fiable, il est indispensable de sélectionner soigneusement la dimension de la pompe. La capacité requise de la pompe dépendra du nombre et du type de robinets d'évacuation dans le bassin du puisard, plus du type d'établissement desservi. Les principes fondamentaux impliqués pour la sélection d'une pompe pour un système d'eau peuvent être utilisés pour sélectionner une pompe submersible pour égouts. En répondant aux trois (3) questions se rapportant à la capacité, aux conditions d'aspiration et d'évacuation, nous saurons ce qui est requis de la pompe et pourrons sélectionner la bonne pompe dans le catalogue.

1. Pour simplifier la sélection d'une pompe submersible pour égout de bonne grandeur, la règle est de baser la capacité de la pompe sur le nombre de toilettes desservies par la pompe. Ceci diffère de la sélection de la bonne pompe pour un système à eau dans la question 1, « Eau nécessaire » est inversée. Combien de liquide souhaitez-vous évacuer au lieu de combien d'eau avezvous besoin? Le tableau suivant aidera à déterminer la capacité de la pompe:

Tableau de sélection pour égout pour système résidentiel ou commercial

Nombre de salle de bain	G/M
1	20
2	30

Le tableau de sélection ci-dessus tient compte des autres robinets qui évacueront seulement de l'eau dans le bassin à égout. Par conséquent, la capacité de la pompe ne doit pas être augmentée pour les lavoirs, baignoires, douches, lave-vaisselle ou laveuses. Lorsqu'il n'y a pas de toilettes dans l'établissement desservi, par exemple, une buanderie, il faut tenir compte du robinet principal d'évacuation de déchet. Dans ce cas, le tableau doit lire « Nombre maximum de laveuses ».

Dans les régions où les tuiles de drainage provenant des pelouses ou champs environnants pénètrent dans le puisard, les eaux d'infiltration peuvent être calculées comme suit :

14 gal/min pour 1 000 pi² de **terre sablonneuse** 8 gal/min pour 1 000 pi² de **terre argileuse**

Si les eaux d'infiltration calculées font moins d'un quart de la capacité de la pompe requise basé sur le nombre de toilettes, la capacité de la pompe ne doit pas être augmentée. Toutes eaux d'infiltration dépassant le quart permis doit être ajouté à la capacité requise de la pompe.

- **2.** Puisque la pompe est immergée dans le liquide qui est pompé, il n'y a pas d'effet d'aspiration. La question 2 ne devient PAS un facteur pour la sélection de la pompe.
- 3. Répondre aux conditions d'évacuation de la question 3 est la dernière étape pour sélectionner une pompe submersible d'égout. Seule la distance verticale entre la pompe et le point le plus haut du tuyau d'évacuation, plus les pertes de friction dans le tuyau d'évacuation et les raccords ont un impact sur la pression de décharge. (Les pertes de friction peuvent être obtenues du tableau de friction dans ce manuel de sélection.)

Normalement, on ne tient pas compte de la pression de service. Le total de la distance verticale, plus les pertes de friction est la charge d'évacuation requise en pieds.

MESURE ET SÉLECTION DE POMPES POUR EAUX USÉES

QUE DEVEZ-VOUS SAVOIR POUR FAIRE UN CHOIX DE POMPE POUR EAUX D'ÉGOUT?

1. Évaluer la grosseur des solides à traiter.

- Effluent (liquide seulement) <1 po
- Résidentiel 1½ po ou plus large
- Commercial/Industriel 2½ po ou plus large

2. Capacité requise.

- 1 bain 20 gal/min
- 1 à 3 bains 30 gal/min
- 4 à 5 bains 45 gal/min

3. Durée de fonctionnement pompe/moteur

Les unités jusqu'à 1½ HP devraient fonctionner un minimum d'une (1) minute. Les unités de deux (2) HP ou plus doivent fonctionner un minimum de deux (2) minutes.

4. Formule pour charge dynamique totale :

Élévation verticale

- + perte de friction (tuyau + raccords)
- + Exigences de pression (x 2,31 pi)

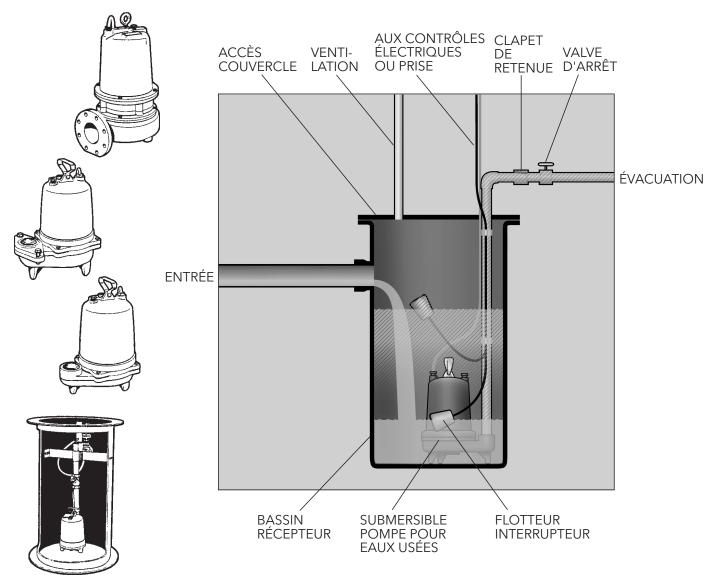
Charge totale en pieds

Remarque: Les pompes à eaux usées sont conçues pour pomper l'effluent avec certains solides suspendus, non des solides avec un peu d'effluent.

- **5.** Doit maintenir **une vitesse** minimale de 2 pi/seconde (voir index).
- **6.** Doit tourner le tuyau d'évacuation entreposé **au moins** une fois par cycle. (voir index).

7. Un bassin avec couvercle sont-ils requis?

8. Quelle est la puissance requise?


- Phase 1Ø ou 3Ø
- Tension 115, 200, 230, 460 ou 575 V
- Hertz 50 ou 60 Hz

9. Quelle grosseur de tuyau sera utilisée?

10. Système simplex ou duplex?

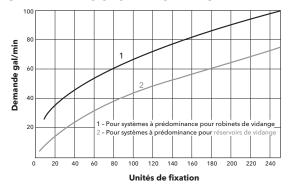
(Duplex lorsque le service ne peut être interrompu)

Remarque : Les codes fédéraux et locaux ont préséance.

CALCULE DU DÉBIT

Évaluation résidentielle

COMPTE SALLE DE BAIN

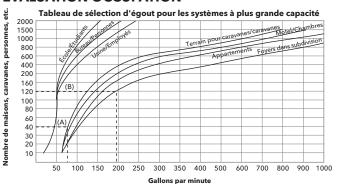

Nombre de salles de bain	Débit par minute			
1	20			
2	30			
3	40			
4	50			
5	60			
6	70			

COMPTE DE ROBINET V = robinet style Vanne T = robinet style réservoir (Tank)

Robinet	Туре	Compte
Toilette	V	6
Toilette	Т	3
Lavabo	V ou T	1
Baignoire	V ou T	2
Douche	V ou T	2
Douche pleine	Ajouter le débit : 9 à 65 g	allons par minute au total
Évier de cuisine	V ou T	2
Lave-vaisselle	V ou T	4
Laveuse	V ou T	8
Bidet	V ou T	3
Machine à glaçons	V ou T	3
Robinet d'arrosage	V ou T	4

Robinet	Quantité	Compte	Total compte
Toilettes	3	3	9
Baignoire et douche	2	4	8
Douche pleine			15
Lavabo		1	3
Évier de cuisine	1	2	2
Lave-vaisselle	1	4	4
Machine à glaçons	1	3	3
Laveuse	1	8	8
Robinet d'arrosage	1	4	4
Total			56

PLOMBERIE DES SYSTÈMES D'EAU

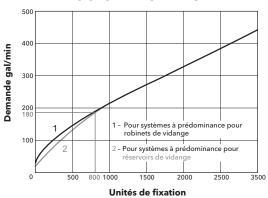

Courbes estimées de chasseur pour demande de charge

1 - Courbe robinet de vidange

2 - Courbe réservoir de vidange

Évaluation commerciale

ÉVALUATION OCCUPATION



COMPTE DE ROBINET V = robinet style Vanne T = robinet style réservoir (Tank)

Robinet	Туре	Compte	
Toilette	V	10	
Toilette	Т	5	
Urinoir	V ou T	10	
Stalle d'urinoir	V ou T	5	
Lavabo	V ou T	3	
Évier de cuisine	V ou T	4	
Baignoire	V ou T	4	
Douche	V ou T	4	
Lave-vaisselle	V ou T	4	
Machine à glaçons	V ou T	3	
Laveuse commerciale	V ou T	6	
Robinet d'arrosage - commercial	V ou T	6	
Douche pleine	Ajouter le débit de 9 à 65 gallons par minute au total		

Robinet	Quantité	Compte	Total compte
Toilette	50	10	500
Lavabo	50	3	150
Douche	50	4	200
Douche pleine	50	15	750
Lave-vaisselle	50	4	200
Machine à glaçons	50	3	150
Laveuse	10	6	60
Lave-vaisselle	10	4	40
Robinet d'arrosage	2	6	12
Total			2062

PLOMBERIE DES SYSTÈMES D'EAU

Courbes estimées de chasseur pour demande de charge

EXEMPLE DU CALCUL DU DÉBIT

Pour calculer le débit selon le nombre de robinets

Prendre le nombre total de chaque style de robinet X le compte pour ce robinet. Ajouter tous les décomptes de robinets. Ajouter le débit de douche pleine au total.

Utiliser les courbes estimées « Hunter » pour la charge de demande pour les styles de robinets appropriés. (Les robinets style vanne sont prédominants dans les immeubles commerciaux; les robinets style réservoir sont prédominants dans les immeubles résidentiels).

EXEMPLE D'IMMEUBLE COMMERCIAL:

Robinets style vanne

25 toilettes

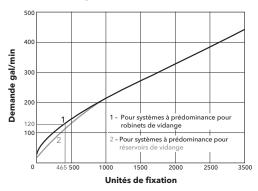
25 lavabos

25 baignoires

6 éviers de cuisine

2 laveuses commerciales

1 lave-vaisselle


Calcul

Total

25 Toilettes	Χ	10 Comptes	=	250
25 lavabos	Χ	3 Comptes	=	75
25 baignoires	Χ	4 Comptes	=	100
6 éviers de cuisine	Χ	4 Comptes	=	24
2 commerciaux	Χ	6 Comptes	=	12
1 lave-vaisselle	Χ	4 Comptes	=	4

465 compte

Plomberie des systèmes d'eau

Courbes estimées de chasseur pour demande de charge

CALCUL DE CHARGE

Exemple : Fig. 1. Un logement à deux salles de bain installées de manière à ce que l'égout principal de la ville est juste au-dessus du drain du sous-sol. Les eaux de filtration par la tuile de drainage dans le puisard sont estimées à 6 gal/min. La distance verticale depuis la pompe au point le plus élevé dans la tuyauterie d'évacuation est de 12 pieds.

Une pompe capable de pomper 30 gal/min est requise (les eaux de filtration sont inférieures à un quart de la capacité de la pompe, elle est donc automatiquement incluse). La tête d'évacuation doit être 12 pieds, plus toute perte de friction dans le tuyau d'environ 15 pieds, 3 coudes 90°, 3 coudes 45° et un clapet de non-retour.

Supposons qu'un tuyau en plastique est utilisé.

1. DÉBIT = 30 gal/min

Deux (2) toilettes, incluant eaux d'infiltration jusqu'à un quart de la capacité de la pompe choisie 6 gal/min est moins que les 7,5 gal/min permis, donc aucune cor rection n'est nécessaire.

2. CONDITIONS D'ASPIRATION - Aspiration inondée

3. CONDITIONS D'ÉVACUATION

Différentiel vertical 12 pi

Pertes de friction à 30 gal/min

15 pi de tuyau 2 po (1,8 po par 100 pi de tuyau) = 2 pi P.F.

3-2 po, coudes 90° = pieds équivalent 16,5

3-2 po, coudes 45° = pieds équivalent 7,5

1-clapet de retenue = 19 pieds équivalent

Total = 43 pieds équivalent = 0,6 pi P. F.

Charge d'évacuation totale = 12,8 pi

En consultant le catalogue, nous trouvons qu'une pompe pour égout de 1/3 HP serait parfaite pour le besoin.

Exemple : les même conditions que pour l'exemple précédent existe, sauf que la maison se trouve sur une grande bande de terre sablonneuse où l'eau d'infiltration est estimée à 20 gal/min.

1. DÉBIT = 30 gal/min

Deux (2) toilettes, incluant eaux d'infiltration jusqu'à un quart de la capacité de la pompe choisie - 7,5 gal/min.

Les 12,5 gal/min (20 - 7,5) supplémentaires doivent être ajoutés àla capacité requise de la pompe - 12,5 gal/min **Total** = 42,5 gal/min

2. CONDITIONS D'ASPIRATION Aspiration inondée

3. CONDITIONS D'ÉVACUATION

Différentiel vertical - 12 pi

Pertes de friction à 42,5 gal/min

15 pi de tuyau 2 po (3,5 po par 100 pi de tuyau) = 5 pi P.F.

3-2 po, coudes 90° = pieds équivalent 16,5 3-2 po, coudes 45° = pieds équivalent 7,5

1-clapet de retenue = 19 pieds équivalent

Total = 43 pieds équivalent ou 1,5 pi P. F.

Charge d'évacuation totale = 14 pi

En consultant à nouveau le catalogue, nous trouvons qu'une pompe pour égout de 1/3 HP serait parfaite pour cette installation.

TAILLE DU BASSIN

CALCUL DE LA DIMENSION DU BASSIN

1. Choisir un diamètre

Un minimum de 24 po est requis pour simplex. Les stations duplex démarrent normalement à 36 po, mais nécessitent un diamètre plus large pour les pompes d'évacuation.

Par exemple : une pompe qui débite 100 gal/min a besoin de fonctionner 2 minutes. Une station duplexe avec un diamètre de 36 po contient 4,4 gallons (voir le tableau A) par pouce.

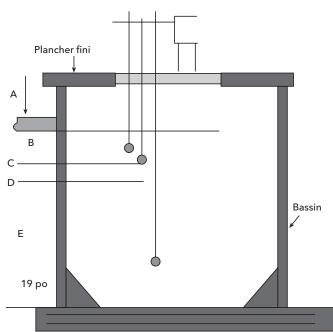
50 gal/min x 2 minutes = 100 gallons

100 gallons / 4,4 gallons par pouce 22,72 po pour pompage vers le bas.

22,72 po serait utilisé pour (E).

2. Mesurer la profondeur

<u>Méthode pour mesurer l'entrée et l'emplacement du</u> flotteur de bassin


1. Haut du bassin au bas de l'entrée (A) +	po.
--	-----

3. Alarme à flotteur de retard (C)
$$+$$
 po.

 Plancher du bassin au haut du boîtier de la pompe + 19 po. (Note B)

Note A = le diamètre minimum suggéré du bassin pour une configuration en duplex est de 36 po. Le volume en pouce du bassin divisé par 2 fois le taux de pompage.

Note B = la plupart des pompes mesurent environ 19 po de haut. La pompe doit rester couverte pendant le pompage.

TABLEAU A

Dimen	nsions	Volumes			
Diamètre	Profon- deur	Total gal- lons	Gallons par pouce		
	36	65	1,81		
	48	84	1,75		
24	60	102	1,70		
24	72	118	1,64		
	84	165	1,96		
	96	188	1,96		
	36	110	3,00		
	48	137	2,85		
20	60	169	2,82		
30	72	199	2,76		
	84	257	3,05		
	96	294	3,06		
	36	159	4,41		
	48	200	4,17		
36	60	246	4,10		
	72	291	4,04		
	84	370	4,40		
	96	423	4,40		
	48	274	5,71		
	60	339	5,65		
42	72	402	5,58		
	84	504	6,00		
	96	576	6,00		
	48	361	7,52		
	60	446	7,43		
48	72	529	7,34		
	84	658	7,83		
	96	752	7,83		
	78	955	12,24		
60	84	1028	12,23		
	96	1175	12,23		
	78	1375	17,62		
72	84	1481	17,63		
	96	1692	17,63		

DONNÉES ÉLECTRIQUES

HOMOLOGATION ET RETRAIT DE LA PRISE D'ALIMENTATION

Notre pompes à puisard monophasée, effluent et égout avec des moteurs de 115, 208 et 230 volts jusqu'à et incluant 1 HP sont maintenant construites avec des cordons d'alimentation à fiche trois lames NEMA. Ceci permet aux électriciens qualifiés et installateurs de pompe professionnels de raccorder aisément les pompes; conformément aux codes de l'électricité national, NEC (É.-U.), CSA (Canada), fédéraux, provinciaux et locaux à un interrupteur à flotteur adéquatement superposé pour une opération automatique.

AVERTISSEMENT: cette déclaration est rédigée dans le but de vérifier auprès des inspecteurs électriques que selon les normes d'UL et de CSA, il est permis de retirer les extrémités des fiches pour un branchement direct à un interrupteur de déconnexion, un panneau de contrôle et un interrupteur à flotteur câblé. Le fait de retirer les extrémités des fiches n'enfreint pas les normes de certification UL ou CSA/CUS d'aucune manière. Toujours suivre les codes mentionnés préalablement lors des connexions aux fils nus une fois que la fiche est retirée. L'information sur le retrait de la fiche et les schémas de câblage se trouvent dans le manuel d'installation livré avec la pompe et dans ce livret. Veuillez utiliser cette déclaration si un inspecteur avait besoin d'une assurance écrite de cette politique.

DIMENSIONS DE TRANSFORMATEUR

Une alimentation triphasée complète est recommandée pour tous les moteurs triphasés consistant de trois transformateurs individuels ou un transformateur triphasé. Une connexion delta ouverte ou étoile utilisant seulement deux transformateurs peut être utilisées, mais causeront vraisemblablement des problèmes par des déséquilibres du courant.

La valeur nominale du transformateur ne doit pas être plus petite que celle indiquée sur le tableau pour la tension d'alimentation au moteur seul.

CAPACITÉ DE TRANSFORMATEUR REQUISE POUR LES MOTEURS SUBMERSIBLES

Moteur submersible	Total Effectif		taux KVA - nsformateur
3Ø Nominale HP	KVA Requis	Transformateur Étoile Delta 2 ouvert	Transformateur Étoile ou Delta 3 ouvert
1½ po	3	2	1
2	4	2	1½ po
3	5	3	2
5	7½ po	5	3
7½ po	10	7½ po	5
10	15	10	5
15	20	15	7½ po
20	25	15	10
25	30	20	10
30	40	25	15
40	50	30	20
50	60	35	20
60	75	40	25
75	90	50	30
100	120	65	40

APPLICATION - TRIPHASÉ NON ÉQUILIBRÉ

TENSION TRIPHASÉE NON ÉQUILIBRÉE

Une alimentation triphasée complète est recommandée pour tous les moteurs triphasés consistant de trois transformateurs individuels ou un transformateur triphasé. Les connexions étoile ou delta surnommées « ouvertes » utilisant seulement deux transformateurs peuvent être utilisées, mais causeront probablement des problèmes notamment un déclenchement en cas de surcharge médiocre ou une panne du moteur précoce en raison d'un déséquilibre.

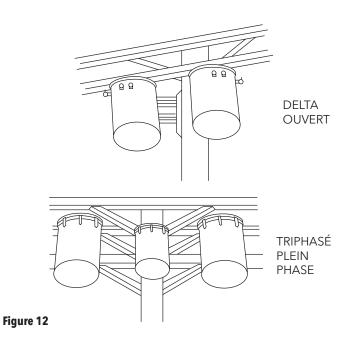
La valeur nominale du transformateur ne doit pas être plus petite que celle indiquée sur le tableau 2 à la page 3 pour la tension d'alimentation au moteur seul.

Vérification et correction de la rotation et du déséquilibre du courant.

- Établir la bonne rotation du moteur en le faisant tourner dans les deux sens. Modifier la rotation en échangeant deux des trois fils du moteur. La rotation qui donne le plus grand débit d'eau est toujours la bonne rotation.
- Après avoir établi la bonne rotation, vérifier le courant dans chacun des trois fils de moteur et calculer le déséquilibre du courant comme expliqué dans 3, ci-dessous.
 - Si le déséquilibre du courant est de 2 % ou moins, laisser les fils tel que connectés.
 - Si le déséquilibre du courant est supérieur à 2 %, il faut vérifier chaque lecture de courant sur chaque jambe en utilisant chacun des trois raccordements possibles. Rouler les fils de moteur le long du démarreur dans le même sens pour empêcher l'inversion du moteur.
- 3. Pour calculer le pourcentage du déséquilibre du courant : A. Additionner les valeurs des trois lignes d'ampères.
 - B. Diviser la somme par trois, ce qui donne le courant moyen.
 - C. Choisir la valeur d'ampères qui est le plus loin du courant moyen (soit haut ou faible).
 - D. Déterminer la différence entre cette valeur d'ampère (la plus loin de la moyenne) et la moyenne.
 - E. Diviser la différence par la moyenne.
 Multiplier le résultat par 100 pour déterminer le pourcentage du déséquilibre.
- 4. Le déséquilibre du courant ne doit pas dépasser 5 % du facteur de charge de service ou 10 % à l'entrée de charge nominale. Si le déséquilibre ne peut être corrigé en roulant les fils, la source du déséquilibre doit être trouvée et corrigée. Si, parmi les trois raccordements possible, la jambe la plus éloignée de la moyenne reste sur le même fil d'alimentation, la plupart du déséquilibre provient de la source d'alimentation. Cependant, si la lecture la plus éloignée de la moyenne se déplace avec le même fil de moteur, la principale source du déséquilibre provient du « côté moteur » du démarreur. Dans cette instance, envisagez la possibilité d'un câble endommagé, d'une fuite d'épissure, d'une mauvaise connexion ou d'un enroulement de moteur défectueux.

Désignation de phase de fils pour rotation CCW vu depuis l'extrémité de l'arbre

Pour renverser la rotation, inverser deux fils.


Phase 1 ou « A » - Fil de moteur noir ou T1

Phase 2 ou « B » - Fil de moteur blanc ou T2

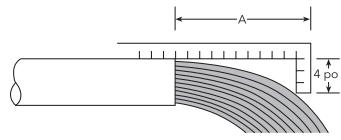
Phase 3 ou « C » - Fil de moteur rouge ou T3

Avis: Phase 1, 2 et 3 ne peut être L1, L2 et L3.

	Raccordement 1				Raccordement 2				Racc	ordem	ent 3
	L1	L2	L3		L1	L2	L3		L1	L2	L3
Démarreur											
Bornes	Ť	Ť	Ť		Ŧ	Ť	Ť		Ŧ	Ť	Ŧ
	T1	T2	T3		T1	T2	Т3		T1	T2	Т3
Moteur											
Fils	R	В	W		W	R	В		В	W	R
	Т3	T1	T2		T2	Т3	T1		T1	T2	Т3
Exemple:											
•	Т3	-R = 5	51 A		T2	-W =	50 A		Т	1-B =	50 A
	T1	-B = 4	16 A		T	3-R =	48 A		T2	2-W =	49 A
	T2-	W = 5	3 A		Τ´	1-B =	52 A		Т	3-R =	<u>51</u> A
	Tota	l = 15	0 A		Tot	al = 1	50 A		Tot	tal = 1	50 A
	÷	3 = 5	60 A		-	÷ 3 =	50 A			÷ 3 =	50 A
	-	46 =	4 A		-	– 48 =	= 2 A			– 49 =	= 1 A
4 ÷ 50	0 = 0,	08 ou	8%	2 ÷	50 = 0),04 οι	ı 4 %	1 ÷ !	50 = 0	0,02 o	u 2 %

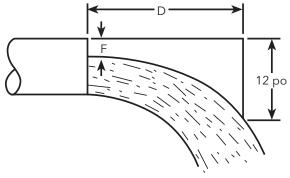
DONNÉES ÉLECTRIQUES

BOÎTIERS DE PANNEAU DE CONTRÔLE NEMA


Valeur nominale boîtier	Explication
NEMA 1 ①	Prévenir un contact accidentel avec l'appareil. Convient pour les
But général	applications à l'intérieur où il n'y a pas de risque d'une exposition à des conditions de service inhabituel.
NEMA 2	Prévenir un contact accidentel et en plus, exclure la chute d'humidité ou de
Étanche	saleté.
NEMA 3 ①	La protection contre les intempéries. Convient pour l'utilisation à l'extérieur.
Résistant aux intempéries	
NEMA 3R ①	Protège contre l'entrée d'eau d'une pluie battante. Convient pour
Étanche	l'application générale à l'extérieure ne nécessitant pas une protection contre les giboulées.
NEMA 4 ①	Conçu pour exclure l'eau appliquée sous forme de jet d'extincteur. Pour
Étanche	protéger contre le jet d'eau pendant les opérations de nettoyage, etc.
NEMA 4X ①	Conçu pour exclure l'eau appliquée sous forme de jet d'extincteur. Pour
Étanche et résistant à la	protéger contre le jet d'eau pendant les opérations de nettoyage, etc.
corrosion	Résistant à la corrosion.
NEMA 5	Construit de manière à ne pas laisser entrer la poussière. En cours de
Anti-poussière	remplacement sur certains équipements par NEMA 12.
NEMA 6	Destiné à permettre l'opération de l'appareil enfermé lorsqu'il est submergé
Submersible	dans l'eau sous une pression et une durée spécifiées.
NEMA 7	Conçu pour satisfaire aux exigences du code de l'électricité nationale pour
Endroits dangereux	les endroits dangereux (atmosphères explosives) Classe 1. Interruption du
Classe I - Coupure anti-retour	circuit dans l'air.
NEMA 8	Identique à NEMA 7 ci-dessus, sauf que l'appareil est immergé dans l'huile.
Endroits dangereux	
A, B, C ou D	
Classe II - Immergé dans l'huile	
NEMA 9	Conçu pour satisfaire aux exigences du code de l'électricité nationale pour
Endroits dangereux	les endroits dangereux (atmosphères explosives) Classe II.
E, F ou G	
Classe II	
NEMA 10	Satisfait aux exigences du Bureau des mines ÉU. Convient à l'utilisation
Bureau des mines	dans les mines de charbon.
Permissible	
NEMA 11	Procure l'immersion d'huile de l'appareil afin qu'il convienne pour
Étanche au ruissellement	l'application lorsque l'équipement est soumis à des fumées acides ou
Résistant à la corrosion	autrement corrosives.
NEMA 12	À utiliser par les industries où il faut exclure la poussière, les peluches, fibres
Étanche, anti-poussière	volantes ou l'infiltration de l'huile ou du produit de refroidissement.

① Types disponible de Xylem, Eau résidentielle et commerciale.

DÉTERMINATION DES DÉBITS


DÉBIT DE TUYAU PLEIN - CALCUL DU DÉBIT D'ÉVACUATION EN UTILISANT LA FORMULE D'ÉVACUATION À OUVERTURE HORIZONTALE

Un carré de mesure en forme de L peut être utilisé pour estimer la capacité de débit, en utilisant le tableau ci-dessous. Comme illustré, mettre le côté 4 po du carré afin qu'il soit suspendu et touche l'eau. La distance horizontale illustré sous « A » se trouve dans la première colonne du tableau et vous lisez le diamètre (ID) du tuyau pour trouver le débit d'évacuation en gallons par minute.

Exemple : A est 8 po d'un tuyau à ID de 4 po = un débit d'évacuation de 166 gal/min.

TUYAU NE FONCTIONNANT PAS À PLEIN - CALCUL DU DÉBIT D'ÉVACUATION EN UTILISANT LA MÉTHODE DU FACTEUR DE ZONE

Débit du tuyau horizontal (non plein)

Débit (gal/min) = A x D x 1,093 x F A = Aire de tuyau en pouces carrés D = Distance horizontale en pouces F = Facteur d'aire effectif du tableau Aire de tuyau équivaut à un diamètre intérieur de Dia.² x 0,7854

Exemple : Diamètre intérieur Tuyau = 10 po D = 20 po F = 2½ po A = 10 x 10 x 0,7854 = 78,54 po carré

R % = $\frac{F}{D} = \frac{2\frac{1}{2}}{10} = 25\%$ F = 0,805 Débit = 78,54 x 20 x 1,039 x 0,805 = 1 314 gal/min

Ratio F/D = R %	Eff. Fac- teur aire F	Ratio F/D = R %	Eff. Fac- teur aire F
5	0,981	55	0,436
10	0,948	60	0,373
15	0,905	65	0,312
20	0,858	70	0,253
25	0,805	75	0,195
30	0,747	80	0,142
35	0,688	85	0,095
40	0,627	90	0,052
45	0,564	95	0,019
50	0,500	100	0,000

DÉBIT D'ÉVACUATION EN GALLONS PAR MINUTE / DIMENSION NOMINALE DU TUYAU (ID)

Dist.	Diamètre du tuyau											
horizontale (A) pouces	1 po	1¼ po	1½ po	2 po	2½ po	3 ро	4 po	5 po	6 po	8 po	10 po	12 po
4	5,7	9,8	13,3	22,0	31,3	48,5	83,5					
5	7,1	12,2	16,6	27,5	39,0	61,0	104	163				
6	8,5	14,7	20,0	33,0	47,0	73,0	125	195	285			
7	10,0	17,1	23,2	38,5	55,0	85,0	146	228	334	380		
8	11,3	19,6	26,5	44,0	62,5	97,5	166	260	380	665	1060	
9	12,8	22,0	29,8	49,5	70,0	110	187	293	430	750	1190	1660
10	14,2	24,5	33,2	55,5	78,2	122	208	326	476	830	1330	1850
11	15,6	27,0	36,5	60,5	86,0	134	229	360	525	915	1460	2100
12	17,0	29,0	40,0	66,0	94,0	146	250	390	570	1000	1600	2220
13	18,5	31,5	43,0	71,5	102	158	270	425	620	1080	1730	2400
14	20,0	34,0	46,5	77,0	109	170	292	456	670	1160	1860	2590
15	21,3	36,3	50,0	82,5	117	183	312	490	710	1250	2000	2780
16	22,7	39,0	53,0	88,0	125	196	334	520	760	1330	2120	2960
17		41,5	56,5	93,0	133	207	355	550	810	1410	2260	3140
18			60,0	99,0	144	220	375	590	860	1500	2390	3330
19				110	148	232	395	620	910	1580	2520	3500
20					156	244	415	650	950	1660	2660	3700
21						256	435	685	1000	1750	2800	
22							460	720	1050	1830	2920	
23								750	1100	1910	3060	
24									1140	2000	3200	

CONDITIONS ET FORMULES UTILISABLES

Le terme «charge» tout seul peut être trompeur. Il est communément pris pour signifier la différence d'élévation entre le niveau de succion et le niveau d'évacuation du liquide étant pompé. Bien que ce soit partiellement correct, il n'inclut pas toutes les conditions qui devraient être incluses pour donner une description précise.

■ Charge de friction: la pression exprimée en lb-po² ou pieds de liquide nécessaire pour surmonter la résistance

au débit dans le tuyau

et les raccords.

■ Effet d'aspiration: existe lorsque la source d'alimentation est en dessous de la ligne centrale de la pompe.

- Charge d'aspiration: existe lorsque la source d'alimentation est au dessus de la ligne centrale de la pompe.
- **■** Effet d'aspiration statique: la distance verticale de la ligne du centre du pompage vers le bas au niveau libre de la source liquide.
- Charge d'aspiration statique: la distance verticale de la ligne du centre du pompage vers le haut au niveau libre de la source liquide.
- Charge d'évacuation statique: l'élévation verticale de la ligne du centre de la pompe au point d'évacuation libre.

- **■** Effet d'aspiration dynamique: comprend l'effet d'aspiration statique, la perte de charge de friction et la charge de vélocité.
- Charge d'aspiration dynamique: comprend la charge d'aspiration dynamique moins la charge de friction moins la charge de vélocité.
- Charge d'évacuation dynamique: comprend la charge d'évacuation dynamique moins la charge de friction moins la charge de vélocité.
- **■** Charge dynamique totale: Comprend la charge d'évacuation dynamique plus l'effet d'aspiration dynamique ou moins la charge d'aspiration dynamique.

■ Charge de vélocité:

La charge requise pour accélérer le liquide. En sachant la vélocité du liquide, la perte de charge de la vélocité peut être calculée par une formule simple = $V^2/2$ g dont g représente l'accélération causée par la gravité ou 3,216 pi/s. Bien que la perte de charge de vélocité est un facteur pour calculer les charges dynamiques, la valeur est habituellement petite et dans la plupart des cas négligeable. Voir le tableau.

FORMULES ET SYMBOLES DE BASE

Formules

Formules

Gal/min =
$$\frac{\text{Ib/h}}{500 \times \text{Sp. Gr.}}$$

BHP = $\frac{\text{Gal/min x H x Sp. Gr.}}{3960 \times \text{Sp.}}$

H = $\frac{2,31 \times \text{psi}}{\text{Sp. Gr.}}$

Eff. = $\frac{\text{Gal/min x H x Sp. Gr.}}{3960 \times \text{BHP}}$

H = $\frac{1,134 \times \text{po Hg.}}{\text{Sp. Gr.}}$

N_S = $\frac{\text{NVGal/min}}{\text{H}^{3/4}}$

H_V = $\frac{\text{V}^2}{2 \text{ g}}$ = 0,155 V²

H = $\frac{\text{V}^2}{2 \text{ g}}$

V = Gal/min x 0,321 = Gal/min x 0,409

(I.D.)²

Coût approximatif des moteurs électrique

Moteur HP	kilowatts o sur 1 cent	oyenne en u coût basé oar kilowatt ure	Moteur HP	* Entrée moy. en kw ou coût par kilowatt heure basé sur 1 cent par kw heure	
	1 phase	3 phases		3 phases	
1/3	408		20	16,9	
1/2	0,535	0,520	25	20,8	
3/4	0,760	0,768	30	26,0	
1	1,00	0,960	40	33,2	
1½ po	1,50	1,41	50	41,3	
2	2,00	1,82	60	49,5	
3	2,95	2,70	75	61,5	
5	4,65	4,50	100	81,5	
7½ po	6,90	6,75	125	102	
10	9,30	0.00	150	122	
10	7,30	9,00	200	162	

Symboles

Н

Gal/min = gallon par minute Lb = livres

= heure

Sp. Gr. = gravité spécifique = Charge en pieds lb-po² = livre par pouce carré

po Hg. = pouces de mercure

h, charge de vélocité en pieds

= vélocité en pieds par seconde

= 32,16 pi/s² (accélération de gravité)

Α aire en pouces carrés (πr^2) (pour un cercle ou un tuyau)

ID diamètre intérieur en pouces

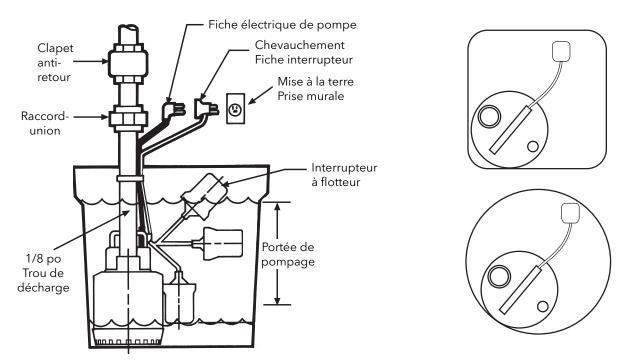
BHP puissance au frein

g

Eff. efficacité de la pompe exprimée en décimale

vitesse spécifique N,

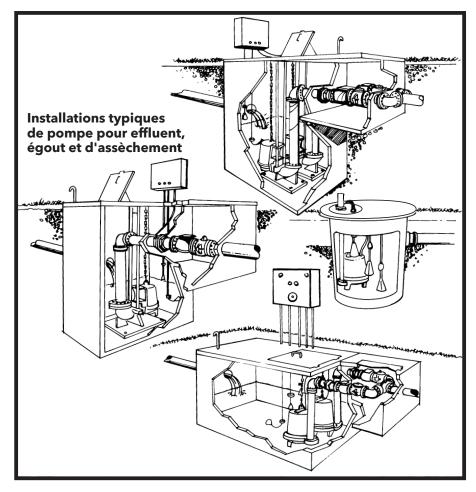
N vitesse en tours par minute


D = roue en pouces

CONDITIONS ET FORMULES UTILISABLES

FORMULES ET SYMBOLES DE BASE

Conversion de	température			Aire	d'un cercle	
	(DEG. F - 32) x (DEG. C x 1,8)		d r CERCLE		aire; C = circonférence. πr^2 ; $\pi = 3,14$ $2\pi r$	D = diamètre r = rayon
Eau puissance _ chevaux	Gal/min x 8,33 x ch	arge = (Gal/min x charge 3 960	Où:	Gal/min = Gallon par minute 8,33 = Livres d'eau par gall 33 000 = pi Lb par minute dan Charge = Différence dans la cl (charge sur le terrain	ns un cheval-vapeur harge d'énergie en pieds
BHP sur le terrain	e = charge x gal/m 3 960 x = BHP en laboratoire sur le terrain + perte	Sp. + perte d'ar		Où:	Gal/min = Gallon par minute Charge = Lab. Charge (incluant p Eff. = Lab. Eff. des bols de po Perte par arbre = perte HP en raisor roulements d'arbre de ligne Perte de roulement de poussée = H poussée de l'entraînement (Vous rep	ompe n d'une friction mécanique des P Perte dans les roulements de
Entrée cheval-vap	$\frac{\text{eur}}{\text{Eff. moteur}}$			Eff. m	oteur du fab. moteur (comme décima	le)
Efficacité sur le te	rrain = Cheval-vape Total BH				u comme déterminé ci-dessus BHP comme déterminé ci-dessus	
Efficacité générale	e de l'usine = Cheval- Entrée ch	vapeur eau neval-vapeur		HP ea	reporter à (2) ci-dessous sous divers. au comme déterminé ci-dessus e HP comme déterminé ci-dessus)
Électrique	Entrée cheval-vapeur	Mot. Eff. BHP = Mot. Eff. = K = T = E = I = PF = E	T Puissance au frein Efficacité moteur n Compteur d'énerg Multiplicateur com Transformateurs co Révolutions du dis Temps en S. pour l Tension par jambe Ampères par jamb	commonomina gie d'er ponnecto que du R a applic pe appli ace du l	ntreprise constant d'énergie d'entreprise ou ratio de és avec compteur n compteur quée au moteur iqués au moteur	·
	Entrée en kilowatt = au moteur	0,746 x I.H.P.	= 1,732 x E x I x PF 1 000		fuelde nomnée neu beure	en pi x 0,00315 ompage x mot. Eff.
Divers	(2) Efficacité générale *Poussée (en lb) = (C	de l'usine est harge en lab	parfois nommées Efficac	i té « Câ l onstant	e (k) + (réglage en pieds x poids	arbre par pi.)
	Charge d'évacuation (en pieds de flu	ride pompé) = Press		r. de fluide pompé	


INSTALLATION TYPIQUE D'UNE POMPE À PUISARD

Installation typique de pompe dans puisard

Positionnement suggéré pour pompe dans puisard

INSTALLATIONS TYPIQUES DE POMPES POUR EFFLUENT ET ÉGOUT

ENTRAÎNEMENTS À VITESSES VARIABLES

POMPES POUR EAUX USÉES ET ENTRAÎNEMENTS À VITESSE VARIABLE

Il est acceptable et de plus en plus courant d'opérer des pompes triphasées pour eaux usées en utilisant des VFD ou des entraînements à fréquence (vitesse) variable. Nous avons fait l'essai et opéré toutes pompes triphasées fabriquées en fonte de qualité supérieure fonctionnant entre 30 et 60 hertz. Les pompes ne doivent jamais être opérées sous 30 hertz (le VFD doit être programmé pour une vitesse minimale de 30 hertz pour empêcher une opération continue) ou au-dessus de 60 hertz en raison d'une charge de HP moteur accrue, une intensité plus élevée et une hausse thermique résultante (vous reporter à HP dans les multiplicateurs de performance 70 hertz).

L'état des lois d'affinité pour une pompe donnée, la capacité variera directement avec un changement de vitesse, la charge variera à mesure que le carré du changement de vitesse et la puissance requise variera à mesure que le cube de la vitesse changera. (Les formules de la loi d'affinité se trouve dans le manuel technique des produits d'eau, TTECHWP). Le tableau de multiplicateur de performance procure des multiplicateurs de raccourci qui élimine le besoin de résoudre des équations de loi d'affinité.

Pour calculer la plage de performance totale de la pompe lors de l'utilisation d'un VFD, utiliser la donnée de 30 hertz pour créer une courbe minimale de vitesse, la pompe contrôlée par VFD doit toujours être opérée entre 30 hertz et la courbe publiée de 60 hertz. Où elle opère à un moment donné n'est pas pertinent.

 Q_1 , H_1 et BHP_1 sont déterminés à la vitesse nominale de la pompe N_1 (tr/min).

 Q_2 , H_2 et BHP_2 sont déterminés à la vitesse N_2 (tr/min).

Utiliser les multiplicateurs avec un minimum de 3 points de données pris d'une courbe standard de 60 Hz afin de déterminer la performance de cette pompe à une nouvelle vitesse.

Hertz	ertz Multiplicateurs de performance							
$70 - Q_2 = Q_2$	2 ₁ x 1,17	$H_2 = H_1 \times 1,37$	$BHP_2 = BHP_1 \times 1,6$					
60 - Utiliser	· les donné	ées de courbe stan	dard publiées					
$50 - Q_2 = C$	$2_1 \times 0.83$	$H_2 = H_1 \times 0.69$	$BHP_2 = BHP_1 \times 0.57$					
$40 - Q_2 = C$	$2_1 \times 0,67$	$H_2 = H_1 \times 0.45$	$BHP_2 = BHP_1 \times 0.3$					
$30 - Q_2 = Q_2$	2₁ <u>x 0,5</u>	$H_2 = H_1 \times 0.25$	$BHP_2 = BHP_1 \times 0.125$					

Un exemple serait résoudre pour Ω_2 , H_2 et BHP_2 pour une pompe 60 Hz qui produit 100 gal/min (Ω_1) à 100 pi tdh (H_1) en utilisant 5 HP (BHP_1) lorsqu'elle est opérée à 30 Hz :

Réponses : 100 gal/min $\times 0.5 = 50$ gal/min, 100 pi TDH $\times 0.25 = 25$ pi TDH et 5 HP $\times 0.125 = 0.63$ HP.

Le VFD économise de l'énergie tout en réduisant la poussée sur les roulements du moteur et le couple de démarrage sur l'arbre et la roue.

Contacter le service à la clientèle pour obtenir des détails, le prix et la disponibilité de notre gamme complète de produits VFD.

LISTE DE VÉRIFICATION POUR SÉLECTION DE PANNEAU STANDARD

MESURE DU PANNEAU

d'étanchéité comme noté.)

Modèle de pompe choisi :			
1.	Phase : Mono Tri		
2.	Tirage d'ampères de la pompe : (trouvé sur le bulletin)		
3.	Simplex ("1" Pompe) Duplex ("2" Pompes dans puits)		
4.	La pompe a-t-elle une panne de l'étanchéité du circuit	::	
	oui ou non (voir remarque)		
	REMARQUE: Si la question 4 est oui, ajouter l'option panne		

utiliser le tableau A	3. Simplex	1. Mono	Question Si
utiliser le tableau E	3. Simplex	1. Trois	Question Si
utiliser le tableau C	3. Double	1. Mono	Question Si
utiliser le tableau D	3. Double	1. Tri	Question Si

TABLEAU A

Numéro de pièce du panneau	Ampère / Maximum HP	Boîtier
S10020N1 (non modifiable)	Jusqu'à 20	Intérieur
S10020	Jusqu'à 20	
S12127	21-27	
S12836	28-36	
S1GD2 (comprend capuchon pour 1GD,12GDS après 12/2005)	2 HP	Intérieur et
S1FGC2 (utiliser avec 1GA/15GDS)	3 HP	extérieur
S1FGC3 (utiliser avec 1/2GA/15/20GDS)	5,4 HP	
S1FGC5 (utiliser avec 2GA /20GDS)	9,4 HP	

Ajouter l'option H pour panne du circuit d'étanchéité de circuit à toutes celles ci-dessus sauf S10020N1. Sauf pour les pompes broyeuses GA/GDS, la panne d'étanchéité et la température élevée sont incluses dans le panneau.

REMARQUE: tous les modèles ne sont pas énumérés. Pour obtenir de l'assistance, veuillez communiquer avec le service à la clientèle.

TABLEAU B

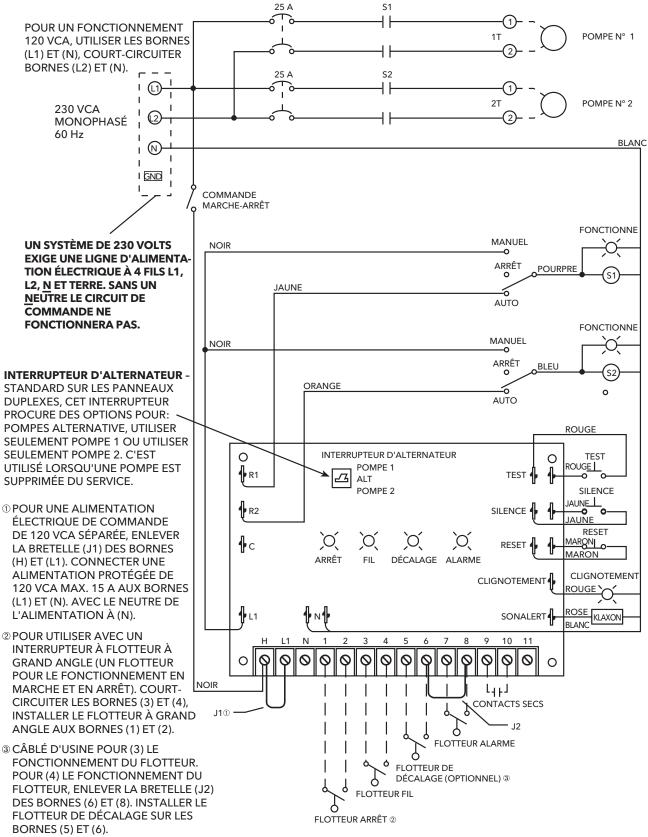
Numéro de pièce du panneau	Ampère / Maximum HP	Boîtier
S31625	1,6-2,5	
S32540	2,5-4,0	
S34063	4,0-6,3	
S36310	6,3-10	Intérieur et
S31016	10-16	extérieur
S31620	16-20	
S32025	20-25	
S32232	22-32	

Ajouter l'option H pour la panne d'étanchéité de circuit à toutes celles ci-dessus, à moins d'utiliser une pompe GA/GDS, utiliser une option « O ».

TABLEAU C

Numéro de pièce du panneau	Ampère / Maximum HP	Boîtier
D10020N1	Jusqu'à 20	Intérieur
D10020	Jusqu'à 20	
D12127	21-27	
D12836	28-36	
D1GD2 (comprend capuchon pour 1GD,12GDS après 12/2005)	2 HP	Intérieur
D1FGC2 (utiliser avec 1GA / 15GDS)	3 HP	et extérieur
D1FGC3 (utiliser avec 1/2GA / 15/20GDS)	5,4 HP	
D1FGC5 (utiliser avec 2GA / 20GDS)	9,4 HP	

Ajouter l'option J pour panne d'étanchéité de circuit à toutes celles ci-dessus sauf D10020N1. Ne pas ajouter de panne d'étanchéité pour les pompes broyeuses GA/GDS, la panne d'étanchéité et la température élevée sont incluses dans le panneau.


TABLEAU D

Numéro de pièce du panneau	Ampère / Maximum HP	Boîtier
D31625	1,6-2,5	
D32540	2,5-4,0	
D34063	4,0-6,3	
D36310	6,3-10	Intérieur et
D31016	10-16	extérieur
D31620	16-20	
D32025	20-25	
D32232	22-32	

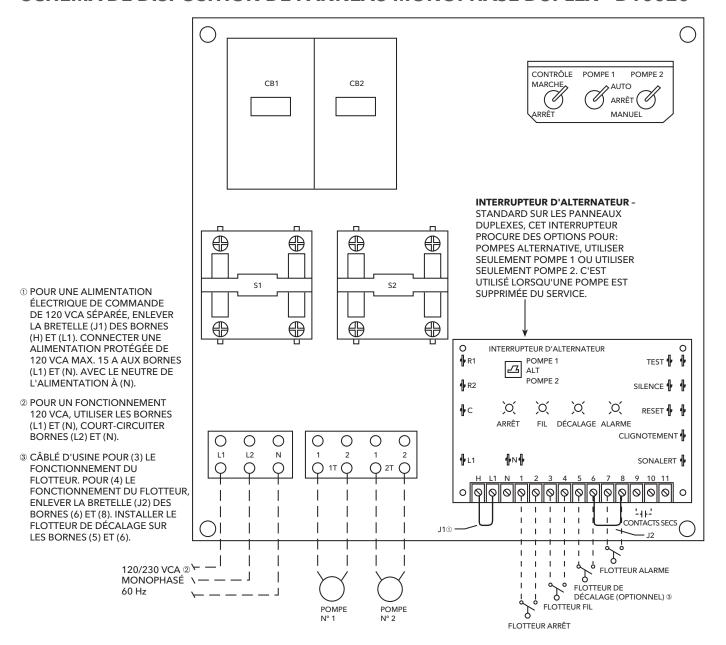

Ajouter l'option J pour la panne d'étanchéité de circuit à toutes celles ci-dessus, à moins d'utiliser une pompe GA/GDS, utiliser une option « P ». Pour les autres options de panneau, vous reporter au catalogue pour les ajouts. Pour les ajouts qui ne sont pas dans le catalogue ou plus de trois options, le service à la clientèle requière une spécification pour préparer le devis. Il est conseillé d'utiliser la fiche de sélection de panneau sur mesure pour plus de trois options.

SCHÉMA DE CÂBLAGE MONOPHASÉ DUPLEX - D10020

REMARQUE: Les panneaux standard illustré dans ce livre ne sont pas conçus pour être utilisés avec des pompes qui nécessitent des condensateurs externes. Vous reporter au catalogue pour des panneaux dotés d'ensemble de condensateur intégré.

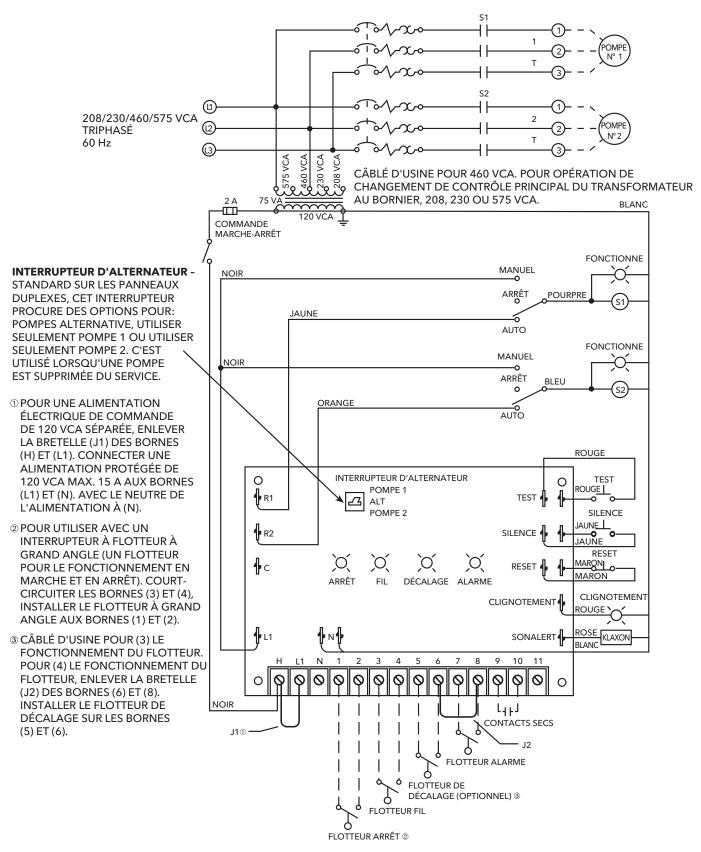
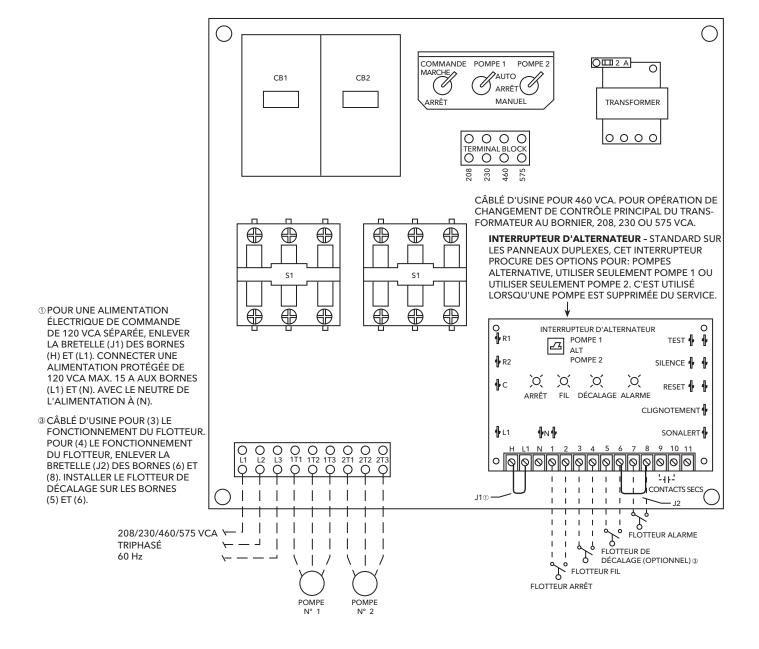


SCHÉMA DE DISPOSITION DE PANNEAU MONOPHASÉ DUPLEX - D10020



REMARQUE: le panneau ne doit pas être utilisé avec des pompes qui ne sont pas dotées de condensateurs.

SCHÉMA DE CÂBLAGE TRIPHASÉ DUPLEX - D3 - - - -

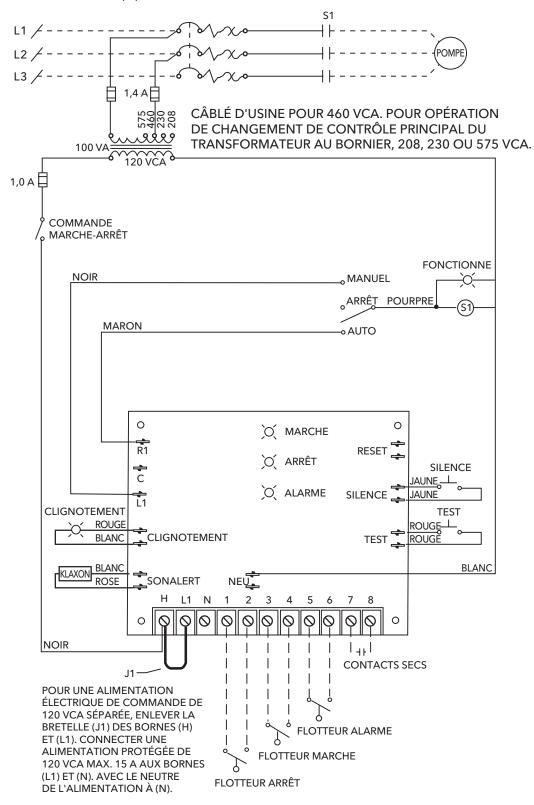
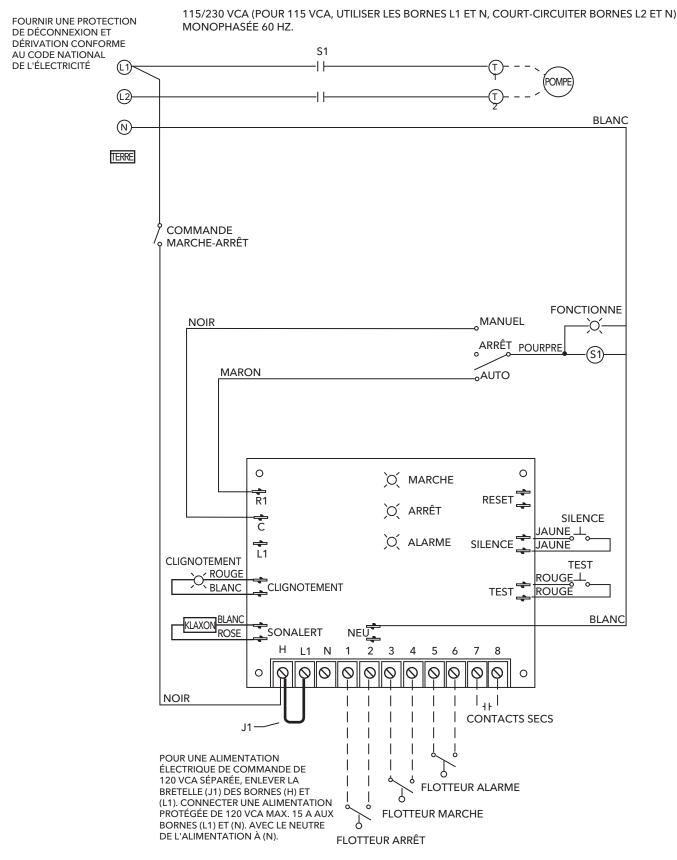


SCHÉMA DE DISPOSITION TRIPHASÉ DUPLEX - D3 - - - -

DISPOSITION DE PANNEAU TRIPHASÉ SIMPLEX

REMARQUE: un disjoncteur ou sectionneur à fusible doit être fourni par l'installateur. Fournir un sectionneur selon la norme NEC 430-53(C).

POUR UTILISER AVEC UN INTERRUPTEUR À FLOTTEUR À GRAND ANGLE (UN FLOTTEUR POUR LE FONCTIONNEMENT EN MARCHE ET EN ARRÊT). COURT-CIRCUITER LES BORNES (3) ET (4), INSTALLER LE FLOTTEUR À GRAND ANGLE AUX BORNES (1) ET (2).


SCHÉMA CÂBLAGE MONOPHASÉ SIMPLEX - S10020 Avant le 1er octobre 2003

REMARQUE: Les panneaux standard illustré dans ce livre ne sont pas conçus pour être utilisés avec des pompes qui nécessitent des condensateurs externes. Vous reporter au catalogue pour des panneaux dotés d'ensemble de condensateur intégré.

115/230 VCA (POUR 115 VCA, UTILISER LES BORNES L1 ET N. COURT-CIRCUITER BORNES L2 ET N). MONOPHASÉ, 60 Hz POMPE REMARQUE: LORSQU'UNE ALIMENTATION ÉLECTRIQUE DE COMMANDE DE 115 VCA SÉPARÉE EST UTILISÉE, ENLEVER LA BRETELLE (J1) DES BORNES I TERRE (L1) ET (LL1). CONNECTER UNE ALIMENTATION PROTÉGÉE CONNECTER UNE ALIMENTATION 115 VCA PROTÉGÉE DE 15 AMP MAX. AUX BORNES LL1 (LL1) ET (N) AVEC LE NEUTRE DE L'ALIMENTATION À (N). **UN SYSTÈME DE 230** COMMANDE MARCHE-ARRÊT **VOLTS EXIGE UNE** LIGNE D'ALIMENTATION **ÉLECTRIQUE À 4 FILS L1.** L2, N ET TERRE. SANS UN **NEUTRE LE CIRCUIT DE FONCTIONNE COMMANDE NE** o MANUEL **FONCTIONNERA PAS.** S1-AUX ARRÊT OTUA o-FLOTTEUR ARRÊT FLOTTEUR MARCHE NIVEAU ÉLEVÉ KLAXON * MARCHE - ARRÊT FLOTTEUR ALARME KLAXON **TEST**

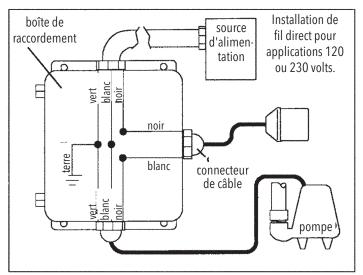
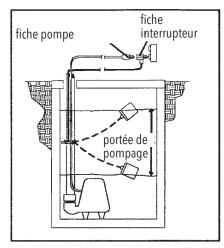
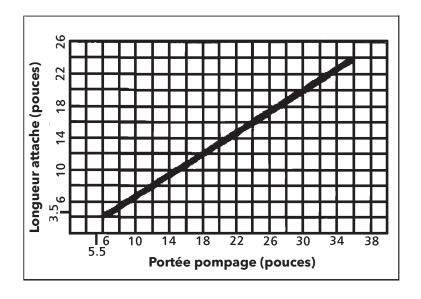
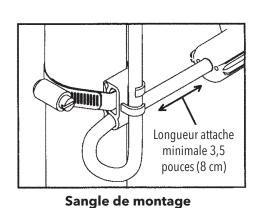

*REMARQUE: LE COMMUTATEUR DE SÉLECTION MARCHE/ARRÊT DU
KLAXON DOIT ÊTRE REMIS EN POSITION MARCHE (ON)
UNE FOIS QUE LA CONDITION D'ALARME A ÉTÉ CORRIGÉE
AFIN DE MAINTENIR L'ANNONCIATION DE L'ALARME SONORE

SCHÉMA CÂBLAGE MONOPHASÉ SIMPLEX - \$10020 Après le 1er octobre 2003



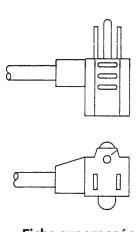
POUR UTILISER AVEC UN INTERRUPTEUR À FLOTTEUR À GRAND ANGLE (UN FLOTTEUR POUR LE FONCTIONNEMENT EN MARCHE ET EN ARRÊT). COURT-CIRCUITER LES BORNES (3) ET (4), INSTALLER LE FLOTTEUR À GRAND ANGLE AUX BORNES (1) ET (2).


SCHÉMAS D'INTERRUPTEURS



Pumpmaster et Pumpmaster Plus - Câblé

Déterminer la portée de pompage



boîte de raccordement

Noir blanc-nentue

Touli-charge
rouge
ponit-ferre
planc-nentue
de câble
interrupteur

Flotteur double - câblé

Fiche superposée

PANNEAUX DE CONTRÔLE D'ÉGOUT ET INTERRUPTEURS

Il existe deux interrupteurs de base utilisé dans les systèmes à égout et effluent. Des interrupteurs à flotteur à action simple ou à angle étroit exécutent une fonction (mise sous tension ou hors tension). Ils fonctionnent sur une plage de 15°. Les interrupteurs à flotteur à grand angle ou à double action et diaphragme exécutent deux fonctions (Mise sous tension et hors tension). Les interrupteurs à flotteur à grand angle fonctionne sur un angle de 90° et les interrupteurs à diaphragme sur une hausse de 6 po dans le niveau de l'eau.

Les diagrammes de câblage du panneau de commande font référence à des systèmes à 3 et 4 flotteurs, cette terminologie fait référence à l'utilisation d'interrupteurs à action simple. Le tableau suivant montre combien de chaque type d'interrupteur utiliser avec les différents panneaux de contrôle.

PANNEAUX DE CONTRÔLE DUPLEX

Les panneaux Duplex typiques utilisent les configurations d'interrupteurs en fonction du type d'interrupteur que vous utilisez. La plupart des panneaux de contrôle Duplex sont doté d'un circuit d'alarme de haut niveau avec une lumière clignotante, la plupart ont un klaxon ou une cloche. Une fois mise sous tension - l'alarme doit être réinitialisée manuellement (mise hors tension) sur les panneaux Duplex.

L'utilisation d'un interrupteur à action simple ou à angle étroit nécessite :

<u>Cabiage de p</u>	<u>banneau a trois ποπeur</u>	<u>Cabiage d</u>	<u>ae panneau a quatre ποττeur</u>
n° 1 Bas	Pompes hors tension	n° Bas	Pompes hors tension
n°2 Milieu	1ère pompe sous tension	n° 2 2e	1ère pompe sous tension
n° 3 Haut	2e pompe et alarme sous tension	n°3 3e	2e pompe sous tension

n° 4 Haut Alarme sous tension

Utilisation des interrupteurs à double action ou à grand angle; A2D23W, A2E21, A2E22, A2E23, A2D11, A2D31 ou A2S23 nécessite :

Câblage de panneau à trois flotteur

n° 1 Bas	1ère pompe sous tension/les deux hors tension
$n^{\circ}2Haut$	2e pompe et alarme sous tension

Câblage de panneau à quatre flotteur

n n° 1 Bas 1ère pompe sous tension/les deux hors tension n° 2 Milieu 2e pompe sous tension n° 3 Haut Alarme sous tension

Panneaux de contrôle Simplex

Seulement les panneaux Simplex sont dotés d'alarmes. C'est la raison pourquoi les exigences de qualité pour l'interrupteur varient par modèle de panneau simplex. Tous nos panneaux SES sont dotés d'alarmes de haut niveau.

L'utilisation d'un interrupteur à action simple ou à angle étroit nécessite :

Panneau Simplex avec alarme		Panneau Si	Panneau Simplex sans alarme		
n° 1 Bas	Pompes hors tension	n°1 Bas	Pompes hors tension		
n°2 Milieu	Pompe sous tension	n° 2 Haut	Pompe sous tension		
n° 3 Haut	Alarme sous tension/hors tension				

L'utilisation d'interrupteur à double action ou à grand angle nécessite :

Panneau Simplex avec alarme		Panneau Simplex sans alarme	
n° 1 Bas	Pompe sous tension/hors tension	n°1 Bas	Pompe sous tension/hors tension
n° 2	Haut Alarme sous tension/hors tension		

REMARQUE: La 1^{ère} pompe peut aussi s'appeler la pompe de tête, la 2^e pompe peut s'appeler la pompe auxiliaire.

Nous vendons et stockons une gamme complète d'interrupteur à flotteur pour eaux usées. L'information la plus actuelle se trouve dans la section Électricité du catalogue pour eaux usées. Le bulletin de l'interrupteur porte le code BCPFS, pour Bulletin CentriPro Float Switches (Bulletin pour interrupteurs à flotteur CentriPro).

On peut le trouver sur nos sites Web:

www.gouldswatertechnology.com

goulds.com/redjacket

www.bellgossett.com

www.centripro.com

REMARQUES

REMARQUES

Xylem | zīləm

- 1) Tissu végétal qui achemine l'eau des racines vers le haut des plantes (en français : xylème) ;
- 2) Société leader mondial dans le secteur des technologies de l'eau.

Chez Xylem, nous sommes tous animés par un seul et même objectif commun : celui de créer des solutions innovantes qui répondent aux besoins en eau de la planète. Aussi, le cœur de notre mission consiste à développer de nouvelles technologies qui amélioreront demain la façon dont l'eau est utilisée, stockée et réutilisée. Tout au long du cycle de l'eau, nos produits et services permettent de transporter, traiter, analyser, surveiller et restituer l'eau à son milieu naturel de façon performante et responsable pour des secteurs variés tels que les collectivités locales, le bâtiment, l'industrie et l'agriculture. L'acquisition de Sensus en octobre 2016 a permis à Xylem d'ajouter à sa gamme de solutions des compteurs intelligents, des réseaux de communication et des technologies d'analyse avancée pour les infrastructures de l'eau, du gaz et de l'électricité. Dans plus de 150 pays, nous avons construit de longue date de fortes relations avec nos clients, qui nous connaissent pour nos marques leaders, notre expertise en applications et notre volonté forte de développer des solutions durables.

Pour découvrir Xylem et ses solutions, rendez-vous sur xylem.com

Xylem Inc.

2881 East Bayard Street Ext., Suite A Seneca Falls, NY 13148

Téléphone : (866) 325-4210

Fax: (888) 322-5877 www.xyleminc.com

Goulds est une marque de commerce enregistrée de Goulds Pumps, Inc. et est utilisée sous licence. Bell & Gossett, Red Jacket Water Products and CentriPro sont des marques de commerce de Xylem Inc. ou une de ses filiales. © 2017 Xylem Inc. TTECHSFR R5 Février 2017